Natural Outlier Rejection with Shepherd's Psychometric Similarity Metric

Dibyasha Mahapatra, Alex James
{"title":"Natural Outlier Rejection with Shepherd's Psychometric Similarity Metric","authors":"Dibyasha Mahapatra, Alex James","doi":"10.1109/ISCAS46773.2023.10182174","DOIUrl":null,"url":null,"abstract":"The human mind does not recognize absolute distances. Instead, it seeks comparisons based on similarity, often called psychometric metrics. While many psychometric metrics have been used in cognitive studies, they are seldom used for machine learning or neural computing studies. In this paper, we present a case of Shepherd's similarity metric that can be effective in naturally removing outliers in natural language classification problems. Natural language processing uses multiple cognitive regions of the human brain, investigations of which can help with developmental studies of the human mind. The proposed similarity metric can help understand the causal links of language processing, giving a sense of human mind functions. A comparison with other similarity metrics indicates that Shepherd's similarity shows unusual tolerance to noise changes and the ability to reject outliers naturally.","PeriodicalId":177320,"journal":{"name":"2023 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Symposium on Circuits and Systems (ISCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS46773.2023.10182174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The human mind does not recognize absolute distances. Instead, it seeks comparisons based on similarity, often called psychometric metrics. While many psychometric metrics have been used in cognitive studies, they are seldom used for machine learning or neural computing studies. In this paper, we present a case of Shepherd's similarity metric that can be effective in naturally removing outliers in natural language classification problems. Natural language processing uses multiple cognitive regions of the human brain, investigations of which can help with developmental studies of the human mind. The proposed similarity metric can help understand the causal links of language processing, giving a sense of human mind functions. A comparison with other similarity metrics indicates that Shepherd's similarity shows unusual tolerance to noise changes and the ability to reject outliers naturally.
用Shepherd的心理测量相似性度量法拒绝自然离群值
人类的大脑无法识别绝对的距离。相反,它寻求基于相似性的比较,通常被称为心理测量指标。虽然许多心理测量指标已用于认知研究,但它们很少用于机器学习或神经计算研究。在本文中,我们提出了一个可以有效地在自然语言分类问题中自然去除异常值的Shepherd相似度度量的例子。自然语言处理使用人类大脑的多个认知区域,对这些区域的研究有助于人类思维的发展研究。提出的相似性度量可以帮助理解语言处理的因果关系,从而对人类的思维功能有一种认识。与其他相似度度量的比较表明,Shepherd的相似度显示出对噪声变化的异常容忍度和自然拒绝异常值的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信