Approximate search algorithm for aggregate k-nearest neighbour queries on remote spatial databases

H. Sato, Ryoichi Narita
{"title":"Approximate search algorithm for aggregate k-nearest neighbour queries on remote spatial databases","authors":"H. Sato, Ryoichi Narita","doi":"10.1504/IJKWI.2013.052722","DOIUrl":null,"url":null,"abstract":"Searching Aggregate k-Nearest Neighbour k-ANN queries on remote spatial databases suffers from a large amount of communication. In order to overcome the difficulty, RQP-M algorithm for efficiently searching k-ANN query results is proposed in this paper. It refines query results originally searched by RQP-S with subsequent k-NN queries, whose query points are chosen among vertices of a regular polygon inscribed in a circle searched previously. Experimental results show that precision of sum k-NN query results is over 0.95 and Number of Requests NOR is at most 4.0. On the other hand, precision of max k-NN query results is over 0.95 and NOR is at most 5.6. RQP-M brings 0.04-0.20 increase in PRECISION of sum k-NN query results and over 0.40 increase in that of max k-NN query results, respectively, in comparison with RQP-S.","PeriodicalId":113936,"journal":{"name":"Int. J. Knowl. Web Intell.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Knowl. Web Intell.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJKWI.2013.052722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Searching Aggregate k-Nearest Neighbour k-ANN queries on remote spatial databases suffers from a large amount of communication. In order to overcome the difficulty, RQP-M algorithm for efficiently searching k-ANN query results is proposed in this paper. It refines query results originally searched by RQP-S with subsequent k-NN queries, whose query points are chosen among vertices of a regular polygon inscribed in a circle searched previously. Experimental results show that precision of sum k-NN query results is over 0.95 and Number of Requests NOR is at most 4.0. On the other hand, precision of max k-NN query results is over 0.95 and NOR is at most 5.6. RQP-M brings 0.04-0.20 increase in PRECISION of sum k-NN query results and over 0.40 increase in that of max k-NN query results, respectively, in comparison with RQP-S.
远程空间数据库聚合k近邻查询的近似搜索算法
在远程空间数据库上搜索聚合k-近邻k-ANN查询受到大量通信的影响。为了克服这一困难,本文提出了一种高效搜索k-ANN查询结果的RQP-M算法。它使用后续的k-NN查询对RQP-S最初搜索的查询结果进行细化,后续的k-NN查询的查询点从之前搜索的圆内嵌的正多边形的顶点中选择。实验结果表明,总和k-NN查询结果的精度超过0.95,请求数NOR最高达到4.0。另一方面,最大k-NN查询结果的精度超过0.95,NOR不超过5.6。与RQP-S相比,RQP-M的sum k-NN查询结果的PRECISION提高了0.04-0.20,max k-NN查询结果的PRECISION提高了0.40以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信