Ceiling analysis of pedestrian recognition pipeline for an autonomous car application

H. Roncancio, A. C. Hernandes, M. Becker
{"title":"Ceiling analysis of pedestrian recognition pipeline for an autonomous car application","authors":"H. Roncancio, A. C. Hernandes, M. Becker","doi":"10.1109/WORV.2013.6521941","DOIUrl":null,"url":null,"abstract":"This paper presents an exploration of the ceiling analysis of machine learning systems. It also provides an approach to the development of pedestrian recognition systems using this analysis. A pedestrian detection pipeline is simulated in order to evaluate this method. The advantage of this method is that it allows determining the most promising pipeline's elements to be modified as a way of more efficiently improving the recognition system. The pedestrian recognition is based on computer vision and is intended for an autonomous car application. A Linear SVM used as classifier enables the recognition, so this development is also addressed as a machine learning problem. This analysis concludes that for this application the more worthy path to be followed is the improvement of the pre-processing method instead of the classifier.","PeriodicalId":130461,"journal":{"name":"2013 IEEE Workshop on Robot Vision (WORV)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Workshop on Robot Vision (WORV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WORV.2013.6521941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper presents an exploration of the ceiling analysis of machine learning systems. It also provides an approach to the development of pedestrian recognition systems using this analysis. A pedestrian detection pipeline is simulated in order to evaluate this method. The advantage of this method is that it allows determining the most promising pipeline's elements to be modified as a way of more efficiently improving the recognition system. The pedestrian recognition is based on computer vision and is intended for an autonomous car application. A Linear SVM used as classifier enables the recognition, so this development is also addressed as a machine learning problem. This analysis concludes that for this application the more worthy path to be followed is the improvement of the pre-processing method instead of the classifier.
自动驾驶汽车行人识别管道的上限分析
本文对机器学习系统的天花板分析进行了探索。本文也为行人识别系统的开发提供了一种方法。通过对行人检测管道的仿真,对该方法进行了验证。这种方法的优点是,它允许确定最有希望的管道的元素进行修改,作为一种更有效地改进识别系统的方式。行人识别是基于计算机视觉的,用于自动驾驶汽车的应用。使用线性支持向量机作为分类器实现识别,因此这一发展也被视为机器学习问题。通过分析得出结论,对于这种应用,更值得遵循的路径是改进预处理方法,而不是改进分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信