Unsupervised Embroidery Generation Using Embroidery Channel Attention

Chen Yang, Xinrong Hu, Yangjun Ou, Saishang Zhong, Tao Peng, Lei Zhu, P. Li, Bin Sheng
{"title":"Unsupervised Embroidery Generation Using Embroidery Channel Attention","authors":"Chen Yang, Xinrong Hu, Yangjun Ou, Saishang Zhong, Tao Peng, Lei Zhu, P. Li, Bin Sheng","doi":"10.1145/3574131.3574430","DOIUrl":null,"url":null,"abstract":"It is a challenging task to synthesize an embroidery image with complex texture from a colorful image. Existing style transfer methods to synthesize embroidery images will lead to color shift and texture clutter. In this paper, the generative adversarial network architecture with embroidery channel attention is proposed to synthesize embroidery images based on the unaligned dataset. Our method can synthesize the color and texture images generated separately from the features of the input image without extra data and cycle network. The generator with embroidery channel attention in our network can generate three attention masks (texture attention mask, color attention mask, original attention mask) and two content masks (color content mask and texture content mask). The color image and texture image of embroidery are synthesized separately with these masks. Meanwhile, a color loss function is proposed to encourage the color of the generated image to be close to that of the original image. In addition, a white padding processing technology is proposed to improve the stability of global embroidery texture synthesis. Existing extensive experiments show that our method synthesizes the embroidery images with realistic color and stable texture to solve the color shift and texture clutter. In the case of ensuring the content of the input images, the results synthesized by our method are closer to the real embroidery.","PeriodicalId":111802,"journal":{"name":"Proceedings of the 18th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and its Applications in Industry","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and its Applications in Industry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3574131.3574430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It is a challenging task to synthesize an embroidery image with complex texture from a colorful image. Existing style transfer methods to synthesize embroidery images will lead to color shift and texture clutter. In this paper, the generative adversarial network architecture with embroidery channel attention is proposed to synthesize embroidery images based on the unaligned dataset. Our method can synthesize the color and texture images generated separately from the features of the input image without extra data and cycle network. The generator with embroidery channel attention in our network can generate three attention masks (texture attention mask, color attention mask, original attention mask) and two content masks (color content mask and texture content mask). The color image and texture image of embroidery are synthesized separately with these masks. Meanwhile, a color loss function is proposed to encourage the color of the generated image to be close to that of the original image. In addition, a white padding processing technology is proposed to improve the stability of global embroidery texture synthesis. Existing extensive experiments show that our method synthesizes the embroidery images with realistic color and stable texture to solve the color shift and texture clutter. In the case of ensuring the content of the input images, the results synthesized by our method are closer to the real embroidery.
使用刺绣频道注意力的无监督刺绣生成
从彩色图像中合成具有复杂纹理的刺绣图像是一项具有挑战性的任务。现有的风格转换方法合成刺绣图像会导致颜色偏移和纹理混乱。本文提出了一种具有刺绣通道关注的生成对抗网络结构,用于在未对齐数据集的基础上合成刺绣图像。该方法可以在不需要额外数据和循环网络的情况下,根据输入图像的特征分别合成颜色和纹理图像。我们网络中带有刺绣通道关注的生成器可以生成三个关注蒙版(纹理关注蒙版、颜色关注蒙版、原创关注蒙版)和两个内容蒙版(颜色内容蒙版和纹理内容蒙版)。用这些面具分别合成了刺绣的彩色图像和纹理图像。同时,提出了一种颜色损失函数来促使生成图像的颜色接近原始图像的颜色。此外,为了提高整体刺绣织构合成的稳定性,提出了一种白色填充加工技术。已有的大量实验表明,该方法能够合成出色彩逼真、纹理稳定的刺绣图像,有效地解决了颜色偏移和纹理杂乱的问题。在保证输入图像内容的情况下,我们的方法合成的结果更接近真实的刺绣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信