Enhancement of Hybrid Multimodal Medical Image Fusion Techniques for Clinical Disease Analysis

Rajalingam B., Priya R.
{"title":"Enhancement of Hybrid Multimodal Medical Image Fusion Techniques for Clinical Disease Analysis","authors":"Rajalingam B., Priya R.","doi":"10.4018/ijcvip.2018070102","DOIUrl":null,"url":null,"abstract":"Multimodal medical image fusion is one the most significant and useful disease analytic techniques. This research article proposes the hybrid multimodality medical image fusion methods and discusses the most essential advantages and disadvantages of these methods. The hybrid multimodal medical image fusion algorithms are used to improve the quality of fused multimodality medical image. Magnetic resonance imaging, positron emission tomography, and single photon emission computed tomography are the input multimodal therapeutic images used for fusion process. An experimental result of proposed hybrid fusion techniques provides the fused multimodal medical images of highest quality, shortest processing time, and best visualization. Both traditional and hybrid multimodal medical image fusion algorithms are evaluated using several quality metrics. Compared with existing techniques the proposed result gives the better processing performance in both qualitative and quantitative evaluation criteria. This is favorable, especially for helping in accurate clinical disease analysis.","PeriodicalId":342439,"journal":{"name":"International Journal of Computer Vision and Image Processing","volume":"4 9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijcvip.2018070102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Multimodal medical image fusion is one the most significant and useful disease analytic techniques. This research article proposes the hybrid multimodality medical image fusion methods and discusses the most essential advantages and disadvantages of these methods. The hybrid multimodal medical image fusion algorithms are used to improve the quality of fused multimodality medical image. Magnetic resonance imaging, positron emission tomography, and single photon emission computed tomography are the input multimodal therapeutic images used for fusion process. An experimental result of proposed hybrid fusion techniques provides the fused multimodal medical images of highest quality, shortest processing time, and best visualization. Both traditional and hybrid multimodal medical image fusion algorithms are evaluated using several quality metrics. Compared with existing techniques the proposed result gives the better processing performance in both qualitative and quantitative evaluation criteria. This is favorable, especially for helping in accurate clinical disease analysis.
混合多模态医学图像融合技术在临床疾病分析中的增强
多模态医学图像融合是目前最重要、最实用的疾病分析技术之一。本文提出了混合多模医学图像融合方法,并讨论了这些方法最本质的优缺点。采用混合多模态医学图像融合算法,提高融合后多模态医学图像的质量。磁共振成像、正电子发射断层扫描和单光子发射计算机断层扫描是用于融合过程的输入多模态治疗图像。实验结果表明,混合融合技术可获得高质量、最短处理时间和最佳可视化效果的多模态医学图像。采用若干质量指标对传统和混合多模态医学图像融合算法进行了评价。与现有技术相比,所提出的结果在定性和定量评价指标上都具有更好的处理性能。这是有利的,特别是有助于准确的临床疾病分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信