T. Samak, R. Egan, Brian Bushnell, D. Gunter, A. Copeland, Zhong Wang
{"title":"Automatic Outlier Detection for Genome Assembly Quality Assessment","authors":"T. Samak, R. Egan, Brian Bushnell, D. Gunter, A. Copeland, Zhong Wang","doi":"10.1109/eScience.2013.49","DOIUrl":null,"url":null,"abstract":"In this work we describe a method to automatically detect errors in de novo assembled genomes. The method extends a Bayesian assembly quality evaluation framework, ALE, which computes the likelihood of an assembly given a set of unassembled data. Starting from ALE output, this method applies outlier detection algorithms to identify the precise locations of assembly errors. We show results from a microbial genome with manually curated assembly errors. Our method detects all deletions, 82.3% of insertions, and 88.8% of single base substitutions. It was also able to detect an inversion error that spans more than 400 bases.","PeriodicalId":325272,"journal":{"name":"2013 IEEE 9th International Conference on e-Science","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 9th International Conference on e-Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eScience.2013.49","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this work we describe a method to automatically detect errors in de novo assembled genomes. The method extends a Bayesian assembly quality evaluation framework, ALE, which computes the likelihood of an assembly given a set of unassembled data. Starting from ALE output, this method applies outlier detection algorithms to identify the precise locations of assembly errors. We show results from a microbial genome with manually curated assembly errors. Our method detects all deletions, 82.3% of insertions, and 88.8% of single base substitutions. It was also able to detect an inversion error that spans more than 400 bases.