Waveform optimization techniques for bi-static Cognitive Radars

Gaia Rossetti, S. Lambotharan
{"title":"Waveform optimization techniques for bi-static Cognitive Radars","authors":"Gaia Rossetti, S. Lambotharan","doi":"10.1109/CSPA.2016.7515815","DOIUrl":null,"url":null,"abstract":"We propose a convex optimization based waveform design technique for bi-static radars. The method exploits prior knowledge of the environment including clutter statistics to maximize accumulated target return signal power while keeping the disturbance power to unity at both the radar receivers. The problem was solved using an iterative optimization approach where the transmitted waveforms are determined using semi-definite programming while receiver filters are obtained using generalized eigenvalue decomposition. Simulation results demonstrate improved signal to disturbance ratio for both the radars.","PeriodicalId":314829,"journal":{"name":"2016 IEEE 12th International Colloquium on Signal Processing & Its Applications (CSPA)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 12th International Colloquium on Signal Processing & Its Applications (CSPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSPA.2016.7515815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We propose a convex optimization based waveform design technique for bi-static radars. The method exploits prior knowledge of the environment including clutter statistics to maximize accumulated target return signal power while keeping the disturbance power to unity at both the radar receivers. The problem was solved using an iterative optimization approach where the transmitted waveforms are determined using semi-definite programming while receiver filters are obtained using generalized eigenvalue decomposition. Simulation results demonstrate improved signal to disturbance ratio for both the radars.
双静态认知雷达的波形优化技术
提出了一种基于凸优化的双基地雷达波形设计技术。该方法利用包括杂波统计在内的环境先验知识,最大限度地提高目标回波信号的累计功率,同时使两个雷达接收机的干扰功率保持一致。利用半定规划确定发射波形,利用广义特征值分解获得接收滤波器的迭代优化方法解决了该问题。仿真结果表明,两种雷达的信扰比都得到了改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信