Unidirectional Quadrupole Antenna on an Ultra-thin Flexible Substrate for 5G IoT Applications

Rocio Rodriguez-Cano, R. Ziolkowski
{"title":"Unidirectional Quadrupole Antenna on an Ultra-thin Flexible Substrate for 5G IoT Applications","authors":"Rocio Rodriguez-Cano, R. Ziolkowski","doi":"10.1109/APWC52648.2021.9539553","DOIUrl":null,"url":null,"abstract":"In this work, the effects of bending our developed unidirectional quadrupole-based broadside-radiating antenna are studied. The compact, ultra-thin planar structure is bent both along its longitudinal and transversal directions. Bending the structure along the short edge (transversal direction), provides very similar performance to the flat structure. On the other hand, when the structure is bent along the long edge, the resonance frequency of the antenna experiences a slight down shift and its front-to-back ratio (FTBR) decreases a little. Nevertheless, it is demonstrated that the performance is still very acceptable and the quadrupolar system works very well in its planar and both bent states.","PeriodicalId":253455,"journal":{"name":"2021 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APWC52648.2021.9539553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, the effects of bending our developed unidirectional quadrupole-based broadside-radiating antenna are studied. The compact, ultra-thin planar structure is bent both along its longitudinal and transversal directions. Bending the structure along the short edge (transversal direction), provides very similar performance to the flat structure. On the other hand, when the structure is bent along the long edge, the resonance frequency of the antenna experiences a slight down shift and its front-to-back ratio (FTBR) decreases a little. Nevertheless, it is demonstrated that the performance is still very acceptable and the quadrupolar system works very well in its planar and both bent states.
5G物联网应用的超薄柔性基板单向四极天线
本文研究了我们研制的单向四极宽频辐射天线的弯曲效应。紧凑的超薄平面结构沿其纵向和横向弯曲。弯曲结构沿短边(横向方向),提供非常相似的性能的平面结构。另一方面,当结构沿长边弯曲时,天线的谐振频率略有下降,前后比略有下降。结果表明,四极体系在平面和双弯曲状态下都能很好地工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信