Comparative Performance Study of CNN-based Algorithms and YOLO

Rachit Mayur Shah, B. Sainath, Akshansh Gupta
{"title":"Comparative Performance Study of CNN-based Algorithms and YOLO","authors":"Rachit Mayur Shah, B. Sainath, Akshansh Gupta","doi":"10.1109/CONECCT55679.2022.9865820","DOIUrl":null,"url":null,"abstract":"Tasks such as image classification, object detection, to mention a few, play an important role in computer vision. Numerous algorithms have been developed to improve the performance of such tasks for benchmark datasets. Although advanced algorithms offer state-of-the-art performance on such tasks, it is also important to analyze their algorithmic feasibility over the time to make it practical for end-user applications. This paper analyzes two such groups of algorithms, namely, Convolutional Neural Networks (CNN) based algorithms with You Only Look Once (YOLO) in terms of speed and accuracy.","PeriodicalId":380005,"journal":{"name":"2022 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONECCT55679.2022.9865820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Tasks such as image classification, object detection, to mention a few, play an important role in computer vision. Numerous algorithms have been developed to improve the performance of such tasks for benchmark datasets. Although advanced algorithms offer state-of-the-art performance on such tasks, it is also important to analyze their algorithmic feasibility over the time to make it practical for end-user applications. This paper analyzes two such groups of algorithms, namely, Convolutional Neural Networks (CNN) based algorithms with You Only Look Once (YOLO) in terms of speed and accuracy.
基于cnn的算法与YOLO的性能比较研究
图像分类、目标检测等任务在计算机视觉中发挥着重要作用。已经开发了许多算法来改进基准数据集的这些任务的性能。虽然先进的算法在这些任务上提供了最先进的性能,但随着时间的推移分析它们的算法可行性也很重要,以使其对最终用户应用程序具有实用性。本文从速度和准确性两方面分析了两组这样的算法,即基于卷积神经网络(CNN)的You Only Look Once (YOLO)算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信