Boosting k-Nearest Neighbor Queries Estimating Suitable Query Radii

Marcos R. Vieira, C. Traina, A. Traina, Adriano S. Arantes, C. Faloutsos
{"title":"Boosting k-Nearest Neighbor Queries Estimating Suitable Query Radii","authors":"Marcos R. Vieira, C. Traina, A. Traina, Adriano S. Arantes, C. Faloutsos","doi":"10.1109/SSDBM.2007.5","DOIUrl":null,"url":null,"abstract":"This paper proposes novel and effective techniques to estimate a radius to answer k-nearest neighbor queries. The first technique targets datasets where it is possible to learn the distribution about the pairwise distances between the elements, generating a global estimation that applies to the whole dataset. The second technique targets datasets where the first technique cannot be employed, generating estimations that depend on where the query center is located. The proposed k-NNF() algorithm combines both techniques, achieving remarkable speedups. Experiments performed on both real and synthetic datasets have shown that the proposed algorithm can accelerate k-NN queries more than 26 times compared with the incremental algorithm and spends half of the total time compared with the traditional k-NN() algorithms.","PeriodicalId":122925,"journal":{"name":"19th International Conference on Scientific and Statistical Database Management (SSDBM 2007)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"19th International Conference on Scientific and Statistical Database Management (SSDBM 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSDBM.2007.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This paper proposes novel and effective techniques to estimate a radius to answer k-nearest neighbor queries. The first technique targets datasets where it is possible to learn the distribution about the pairwise distances between the elements, generating a global estimation that applies to the whole dataset. The second technique targets datasets where the first technique cannot be employed, generating estimations that depend on where the query center is located. The proposed k-NNF() algorithm combines both techniques, achieving remarkable speedups. Experiments performed on both real and synthetic datasets have shown that the proposed algorithm can accelerate k-NN queries more than 26 times compared with the incremental algorithm and spends half of the total time compared with the traditional k-NN() algorithms.
提高k近邻查询估计合适的查询半径
本文提出了一种新颖有效的方法来估计回答k近邻查询的半径。第一种技术的目标是数据集,其中可以学习元素之间成对距离的分布,生成适用于整个数据集的全局估计。第二种技术针对第一种技术无法使用的数据集,生成依赖于查询中心所在位置的估计。提出的k-NNF()算法结合了这两种技术,实现了显著的加速。在真实数据集和合成数据集上进行的实验表明,与增量算法相比,该算法可以将k-NN查询的速度提高26倍以上,并且与传统k-NN()算法相比,该算法的总时间缩短了一半。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信