Machine learning over static and dynamic relational data

A. Kara, M. Nikolic, Dan Olteanu, Haozhe Zhang
{"title":"Machine learning over static and dynamic relational data","authors":"A. Kara, M. Nikolic, Dan Olteanu, Haozhe Zhang","doi":"10.1145/3465480.3467843","DOIUrl":null,"url":null,"abstract":"This tutorial overviews principles behind recent works on training and maintaining machine learning models over relational data, with an emphasis on the exploitation of the relational data structure to improve the runtime performance of the learning task. The tutorial has the following parts: (1) Database research for data science (2) Three main ideas to achieve performance improvements (2.1) Turn the ML problem into a DB problem (2.2) Exploit structure of the data and problem (2.3) Exploit engineering tools of a DB researcher (3) Avenues for future research","PeriodicalId":217173,"journal":{"name":"Proceedings of the 15th ACM International Conference on Distributed and Event-based Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th ACM International Conference on Distributed and Event-based Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3465480.3467843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This tutorial overviews principles behind recent works on training and maintaining machine learning models over relational data, with an emphasis on the exploitation of the relational data structure to improve the runtime performance of the learning task. The tutorial has the following parts: (1) Database research for data science (2) Three main ideas to achieve performance improvements (2.1) Turn the ML problem into a DB problem (2.2) Exploit structure of the data and problem (2.3) Exploit engineering tools of a DB researcher (3) Avenues for future research
基于静态和动态关系数据的机器学习
本教程概述了最近在关系数据上训练和维护机器学习模型的工作背后的原理,重点是利用关系数据结构来提高学习任务的运行时性能。本教程有以下几个部分:(1)数据科学的数据库研究(2)实现性能改进的三个主要思路(2.1)将机器学习问题转化为数据库问题(2.2)利用数据和问题的结构(2.3)利用数据库研究人员的工程工具(3)未来研究的途径
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信