New upper bounds for grain-correcting and grain-detecting codes

A. Sharov, R. Roth
{"title":"New upper bounds for grain-correcting and grain-detecting codes","authors":"A. Sharov, R. Roth","doi":"10.1109/ISIT.2014.6875007","DOIUrl":null,"url":null,"abstract":"New upper bounds on the size and the rate of grain-correcting codes are presented. The new upper bound on the size of t-grain-correcting codes of length n improves on the best known upper bounds for certain values of n and t, whereas the new upper bound on the asymptotic rate of [τn]-grain-correcting codes of length n improves on the previously known upper bounds on the interval τ ∈ (0, ⅛]. A lower bound of 1/2 log2 n on the minimum redundancy of ∞-grain-detecting codes of length n is presented.","PeriodicalId":127191,"journal":{"name":"2014 IEEE International Symposium on Information Theory","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2014.6875007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

New upper bounds on the size and the rate of grain-correcting codes are presented. The new upper bound on the size of t-grain-correcting codes of length n improves on the best known upper bounds for certain values of n and t, whereas the new upper bound on the asymptotic rate of [τn]-grain-correcting codes of length n improves on the previously known upper bounds on the interval τ ∈ (0, ⅛]. A lower bound of 1/2 log2 n on the minimum redundancy of ∞-grain-detecting codes of length n is presented.
颗粒校正码和颗粒检测码的新上界
给出了粒度校正码的大小和速率的新上界。长度为n的t-颗粒校正码的大小的新上界改进了某些n和t值的已知上界,而长度为n的[τn]-颗粒校正码的渐近速率的新上界改进了区间τ∈(0,⅛)上已知的上界。给出了长度为n的∞-粒度检测码的最小冗余度的下界为1/ 2log2n。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信