Markovian Embeddings of General Random Strings

M. Lladser
{"title":"Markovian Embeddings of General Random Strings","authors":"M. Lladser","doi":"10.1137/1.9781611972986.2","DOIUrl":null,"url":null,"abstract":"Let A be a finite set and X a sequence of A-valued random variables. We do not assume any particular correlation structure between these random variables; in particular, X may be a non-Markovian sequence. An adapted embedding of X is a sequence of the form R(X1), R(X1,X2), R(X1,X2,X3), etc where R is a transformation defined over finite length sequences. In this extended abstract we characterize a wide class of adapted embeddings of X that result in a first-order homogeneous Markov chain. We show that any transformation R has a unique coarsest refinement R' in this class such that R'(X1), R'(X1,X2), R'(X1,X2,X3), etc is Markovian. (By refinement we mean that R'(u) = R'(v) implies R(u) = R(v), and by coarsest refinement we mean that R' is a deterministic function of any other refinement of R in our class of transformations.) We propose a specific embedding that we denote as RX which is particularly amenable for analyzing the occurrence of patterns described by regular expressions in X. A toy example of a non-Markovian sequence of 0's and 1's is analyzed thoroughly: discrete asymptotic distributions are established for the number of occurrences of a certain regular pattern in X1, ..., Xn as n → ∞ whereas a Gaussian asymptotic distribution is shown to apply for another regular pattern.","PeriodicalId":340112,"journal":{"name":"Workshop on Analytic Algorithmics and Combinatorics","volume":"245 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Analytic Algorithmics and Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611972986.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Let A be a finite set and X a sequence of A-valued random variables. We do not assume any particular correlation structure between these random variables; in particular, X may be a non-Markovian sequence. An adapted embedding of X is a sequence of the form R(X1), R(X1,X2), R(X1,X2,X3), etc where R is a transformation defined over finite length sequences. In this extended abstract we characterize a wide class of adapted embeddings of X that result in a first-order homogeneous Markov chain. We show that any transformation R has a unique coarsest refinement R' in this class such that R'(X1), R'(X1,X2), R'(X1,X2,X3), etc is Markovian. (By refinement we mean that R'(u) = R'(v) implies R(u) = R(v), and by coarsest refinement we mean that R' is a deterministic function of any other refinement of R in our class of transformations.) We propose a specific embedding that we denote as RX which is particularly amenable for analyzing the occurrence of patterns described by regular expressions in X. A toy example of a non-Markovian sequence of 0's and 1's is analyzed thoroughly: discrete asymptotic distributions are established for the number of occurrences of a certain regular pattern in X1, ..., Xn as n → ∞ whereas a Gaussian asymptotic distribution is shown to apply for another regular pattern.
一般随机字符串的马尔可夫嵌入
设A是一个有限集合,X是A值随机变量的序列。我们不假设这些随机变量之间有任何特定的相关结构;特别地,X可以是一个非马尔可夫序列。X的自适应嵌入是R(X1), R(X1,X2), R(X1,X2,X3)等形式的序列,其中R是在有限长度序列上定义的变换。在这个扩展的摘要中,我们描述了一类广泛的X的自适应嵌入,它们导致一阶齐次马尔可夫链。我们证明了任何变换R在这个类中都有一个唯一的最粗糙的细化R',使得R'(X1), R'(X1,X2), R'(X1,X2,X3)等是马尔可夫的。(通过细化,我们的意思是R'(u) = R'(v)意味着R(u) = R(v),通过最粗略的细化,我们的意思是R'是我们的变换类中R的任何其他细化的确定性函数。)我们提出了一个特定的嵌入,我们表示为RX,它特别适用于分析x中正则表达式描述的模式的出现。我们彻底分析了一个0和1的非马尔可夫序列的一个小例子:建立了X1中某个正则模式出现次数的离散渐近分布,…, Xn为n→∞,而高斯渐近分布适用于另一正则模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信