Jaeyoung Choi, M. Larson, Xinchao Li, Kevin Li, G. Friedland, A. Hanjalic
{"title":"The Geo-Privacy Bonus of Popular Photo Enhancements","authors":"Jaeyoung Choi, M. Larson, Xinchao Li, Kevin Li, G. Friedland, A. Hanjalic","doi":"10.1145/3078971.3080543","DOIUrl":null,"url":null,"abstract":"Today's geo-location estimation approaches are able to infer the location of a target image using its visual content alone. These approaches typically exploit visual matching techniques, applied to a large collection of background images with known geo-locations. Users who are unaware that visual analysis and retrieval approaches can compromise their geo-privacy, unwittingly open themselves to risks of crime or other unintended consequences. This paper lays the groundwork for a new approach to geo-privacy of social images: Instead of requiring a change of user behavior, we start by investigating users' existing photo-sharing practices. We carry out a series of experiments using a large collection of social images (8.5M) to systematically analyze how photo editing practices impact the performance of geo-location estimation. We find that standard image enhancements, including filters and cropping, already serve as natural geo-privacy protectors. In our experiments, up to 19% of images whose location would otherwise be automatically predictable were unlocalizeable after enhancement. We conclude that it would be wrong to assume that geo-visual privacy is a lost cause in today's world of rapidly maturing machine learning. Instead, protecting users against the unwanted effects of pixel-based inference is a viable research field. A starting point is understanding the geo-privacy bonus of already established user behavior.","PeriodicalId":403556,"journal":{"name":"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3078971.3080543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Abstract
Today's geo-location estimation approaches are able to infer the location of a target image using its visual content alone. These approaches typically exploit visual matching techniques, applied to a large collection of background images with known geo-locations. Users who are unaware that visual analysis and retrieval approaches can compromise their geo-privacy, unwittingly open themselves to risks of crime or other unintended consequences. This paper lays the groundwork for a new approach to geo-privacy of social images: Instead of requiring a change of user behavior, we start by investigating users' existing photo-sharing practices. We carry out a series of experiments using a large collection of social images (8.5M) to systematically analyze how photo editing practices impact the performance of geo-location estimation. We find that standard image enhancements, including filters and cropping, already serve as natural geo-privacy protectors. In our experiments, up to 19% of images whose location would otherwise be automatically predictable were unlocalizeable after enhancement. We conclude that it would be wrong to assume that geo-visual privacy is a lost cause in today's world of rapidly maturing machine learning. Instead, protecting users against the unwanted effects of pixel-based inference is a viable research field. A starting point is understanding the geo-privacy bonus of already established user behavior.