Interaction Network Representations for Human Behavior Prediction

Amnay Amimeur, Nhathai Phan, D. Dou, David Kil, B. Piniewski
{"title":"Interaction Network Representations for Human Behavior Prediction","authors":"Amnay Amimeur, Nhathai Phan, D. Dou, David Kil, B. Piniewski","doi":"10.1109/ICMLA.2016.0023","DOIUrl":null,"url":null,"abstract":"Human behavior prediction is critical to studying how healthy behavior can spread through a social network. In this work we present a novel user representation based human behavior prediction model, the User Representation-based Socialized Gaussian Process model (UrSGP). First, we present the Deep Interaction Representation Learning (Deep Interaction) model for learning latent representations of interaction social networks in which each user is characterized by a set of attributes. In particular, we consider social interaction factors and user attribute factors to build a bimodal, fixed representation of each user in the network. Our model aims to capture the evolution of social interactions and user attributes and learn the hidden correlations between them. We then use our latent features for human behavior prediction via the UrSGP model. An empirical experiment conducted on a real health social network demonstrates that our model outperforms baseline approaches for human behavior prediction.","PeriodicalId":356182,"journal":{"name":"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 15th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2016.0023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Human behavior prediction is critical to studying how healthy behavior can spread through a social network. In this work we present a novel user representation based human behavior prediction model, the User Representation-based Socialized Gaussian Process model (UrSGP). First, we present the Deep Interaction Representation Learning (Deep Interaction) model for learning latent representations of interaction social networks in which each user is characterized by a set of attributes. In particular, we consider social interaction factors and user attribute factors to build a bimodal, fixed representation of each user in the network. Our model aims to capture the evolution of social interactions and user attributes and learn the hidden correlations between them. We then use our latent features for human behavior prediction via the UrSGP model. An empirical experiment conducted on a real health social network demonstrates that our model outperforms baseline approaches for human behavior prediction.
人类行为预测的交互网络表示
人类行为预测对于研究健康行为如何在社会网络中传播至关重要。在这项工作中,我们提出了一种新的基于用户表示的人类行为预测模型,即基于用户表示的社会化高斯过程模型(UrSGP)。首先,我们提出了深度交互表示学习(Deep Interaction)模型,用于学习交互社交网络的潜在表示,其中每个用户都具有一组属性。特别是,我们考虑了社会互动因素和用户属性因素,以建立网络中每个用户的双峰固定表示。我们的模型旨在捕捉社交互动和用户属性的演变,并学习它们之间隐藏的相关性。然后,我们通过UrSGP模型使用我们的潜在特征进行人类行为预测。在一个真实的健康社会网络上进行的实证实验表明,我们的模型在人类行为预测方面优于基线方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信