Scalable collaborative filtering based on efficient identification of similar users

Sang-Chul Lee, Si-Yong Lee, Dong-Kyu Chae, Sang-Wook Kim
{"title":"Scalable collaborative filtering based on efficient identification of similar users","authors":"Sang-Chul Lee, Si-Yong Lee, Dong-Kyu Chae, Sang-Wook Kim","doi":"10.1109/ICNIDC.2016.7974566","DOIUrl":null,"url":null,"abstract":"User-based collaborative filtering suffers from significant amount of computational overhead to find users similar to a target user. To reduce the overhead, we propose a novel method to identify unnecessary users and items in computing the similarity. Also, we propose a data structure to support the method quite efficiently. Through extensive experiments, we show the proposed method outperforms traditional methods up to 33.8 times.","PeriodicalId":439987,"journal":{"name":"2016 IEEE International Conference on Network Infrastructure and Digital Content (IC-NIDC)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Network Infrastructure and Digital Content (IC-NIDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNIDC.2016.7974566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

User-based collaborative filtering suffers from significant amount of computational overhead to find users similar to a target user. To reduce the overhead, we propose a novel method to identify unnecessary users and items in computing the similarity. Also, we propose a data structure to support the method quite efficiently. Through extensive experiments, we show the proposed method outperforms traditional methods up to 33.8 times.
基于高效识别相似用户的可扩展协同过滤
基于用户的协同过滤在查找与目标用户相似的用户时,会产生大量的计算开销。为了减少开销,我们提出了一种在计算相似度时识别不需要的用户和项目的新方法。此外,我们还提出了一种数据结构来有效地支持该方法。通过大量的实验,我们表明,该方法优于传统方法高达33.8倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信