A complete framework for temporal video segmentation

Ruxandra Tapu, T. Zaharia
{"title":"A complete framework for temporal video segmentation","authors":"Ruxandra Tapu, T. Zaharia","doi":"10.1109/ICCE-BERLIN.2011.6031875","DOIUrl":null,"url":null,"abstract":"In this paper we propose a complete high level segmentation algorithm of video flows into scenes. In the first stage of our implementation we detected shot boundaries using an enhanced graph partition method based on non-linear scale space filtering at reduce computational time. In the second phase we develop static summaries for each detected shot based on a leap extraction technique that selects a variable number of keyframes depending on the visual content variation. Finally, we propose an iterative, temporally constrained shot clustering technique that detects video scenes with an average precision and recall rates of 85% and 84%.","PeriodicalId":236486,"journal":{"name":"2011 IEEE International Conference on Consumer Electronics -Berlin (ICCE-Berlin)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Consumer Electronics -Berlin (ICCE-Berlin)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-BERLIN.2011.6031875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

In this paper we propose a complete high level segmentation algorithm of video flows into scenes. In the first stage of our implementation we detected shot boundaries using an enhanced graph partition method based on non-linear scale space filtering at reduce computational time. In the second phase we develop static summaries for each detected shot based on a leap extraction technique that selects a variable number of keyframes depending on the visual content variation. Finally, we propose an iterative, temporally constrained shot clustering technique that detects video scenes with an average precision and recall rates of 85% and 84%.
一个完整的框架的时间视频分割
本文提出了一种完整的视频流进入场景的高级分割算法。在我们实现的第一阶段,我们使用基于非线性尺度空间滤波的增强图分割方法来检测镜头边界,从而减少了计算时间。在第二阶段,我们基于跳跃提取技术为每个检测到的镜头开发静态摘要,该技术根据视觉内容的变化选择可变数量的关键帧。最后,我们提出了一种迭代的、时间约束的镜头聚类技术,该技术检测视频场景的平均精度和召回率分别为85%和84%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信