Object-Oriented Reinforcement Learning in Cooperative Multiagent Domains

Felipe Leno da Silva, R. Glatt, Anna Helena Reali Costa
{"title":"Object-Oriented Reinforcement Learning in Cooperative Multiagent Domains","authors":"Felipe Leno da Silva, R. Glatt, Anna Helena Reali Costa","doi":"10.1109/BRACIS.2016.015","DOIUrl":null,"url":null,"abstract":"Although Reinforcement Learning methods have successfully been applied to increasingly large problems, scalability remains a central issue. While Object-Oriented Markov Decision Processes (OO-MDP) are used to exploit regularities in a domain, Multiagent System (MAS) methods are used to divide workload amongst multiple agents. In this work we propose a novel combination of OO-MDP and MAS, called Multiagent Object-Oriented Markov Decision Process (MOO-MDP), so as to accrue the benefits of both strategies and be able to better address scalability issues. We present an algorithm to solve deterministic cooperative MOO-MDPs, and prove that it learns optimal policies while reducing the learning space by exploiting state abstractions. We experimentally compare our results with earlier approaches and show advantages with regard to discounted cumulative reward, number of steps to fulfill the task, and Q-table size.","PeriodicalId":183149,"journal":{"name":"2016 5th Brazilian Conference on Intelligent Systems (BRACIS)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 5th Brazilian Conference on Intelligent Systems (BRACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BRACIS.2016.015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Although Reinforcement Learning methods have successfully been applied to increasingly large problems, scalability remains a central issue. While Object-Oriented Markov Decision Processes (OO-MDP) are used to exploit regularities in a domain, Multiagent System (MAS) methods are used to divide workload amongst multiple agents. In this work we propose a novel combination of OO-MDP and MAS, called Multiagent Object-Oriented Markov Decision Process (MOO-MDP), so as to accrue the benefits of both strategies and be able to better address scalability issues. We present an algorithm to solve deterministic cooperative MOO-MDPs, and prove that it learns optimal policies while reducing the learning space by exploiting state abstractions. We experimentally compare our results with earlier approaches and show advantages with regard to discounted cumulative reward, number of steps to fulfill the task, and Q-table size.
协同多智能体领域的面向对象强化学习
尽管强化学习方法已经成功地应用于越来越大的问题,但可扩展性仍然是一个核心问题。面向对象马尔可夫决策过程(Object-Oriented Markov Decision Processes, o - mdp)用于挖掘领域中的规律,而多代理系统(Multiagent System, MAS)方法用于在多个代理之间划分工作负载。在这项工作中,我们提出了一种新颖的OO-MDP和MAS的组合,称为多代理面向对象马尔可夫决策过程(MOO-MDP),以便积累两种策略的好处,并能够更好地解决可扩展性问题。我们提出了一种求解确定性合作moo - mdp的算法,并证明了该算法通过利用状态抽象来学习最优策略,同时减少了学习空间。我们通过实验将我们的结果与之前的方法进行了比较,并显示了在折扣累积奖励、完成任务的步骤数和q表大小方面的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信