A Novel Approach for Urban Unsupervised Segmentation Classification in SAR Polarimetry

Soumydip Sarkar, Tamesh Halder, Vivek Poddar, R. Gayen, Arundhati M. Ray, D. Chakravarty
{"title":"A Novel Approach for Urban Unsupervised Segmentation Classification in SAR Polarimetry","authors":"Soumydip Sarkar, Tamesh Halder, Vivek Poddar, R. Gayen, Arundhati M. Ray, D. Chakravarty","doi":"10.1109/ICORT52730.2021.9581380","DOIUrl":null,"url":null,"abstract":"In this study, we propose a novel unsupervised classifier for polarimetric SAR image segmentation by using Kullback-Leibler (KL) Divergence and subsequently the K-means algorithm. The K-means algorithm is used to divide the SAR data into spatial clusters based on the mutual proximity of the data points, whereas the KL Divergence or relative entropy measures the difference between one probability distribution and another. The main aim of this study is to assess the performance of classical approaches with this novel approach and provide better results for more accurate SAR image classification.","PeriodicalId":344816,"journal":{"name":"2021 2nd International Conference on Range Technology (ICORT)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 2nd International Conference on Range Technology (ICORT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICORT52730.2021.9581380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we propose a novel unsupervised classifier for polarimetric SAR image segmentation by using Kullback-Leibler (KL) Divergence and subsequently the K-means algorithm. The K-means algorithm is used to divide the SAR data into spatial clusters based on the mutual proximity of the data points, whereas the KL Divergence or relative entropy measures the difference between one probability distribution and another. The main aim of this study is to assess the performance of classical approaches with this novel approach and provide better results for more accurate SAR image classification.
SAR偏振中城市无监督分割分类的新方法
在这项研究中,我们提出了一种新的无监督分类器,用于极化SAR图像分割,该分类器采用Kullback-Leibler (KL)散度和K-means算法。K-means算法基于数据点的相互接近度将SAR数据划分为空间簇,而KL散度或相对熵度量一个概率分布与另一个概率分布之间的差异。本研究的主要目的是用这种新方法评估经典方法的性能,并为更准确的SAR图像分类提供更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信