EMC: Earthquake Magnitudes Classification on Seismic Signals via Convolutional Recurrent Networks

Muhammad Shakeel, Katsutoshi Itoyama, Kenji Nishida, K. Nakadai
{"title":"EMC: Earthquake Magnitudes Classification on Seismic Signals via Convolutional Recurrent Networks","authors":"Muhammad Shakeel, Katsutoshi Itoyama, Kenji Nishida, K. Nakadai","doi":"10.1109/IEEECONF49454.2021.9382696","DOIUrl":null,"url":null,"abstract":"We propose a novel framework for reliable automatic classification of earthquake magnitudes. Using deep learning methods, we aim to classify the earthquake magnitudes into different categories. The method is based on a convolutional recurrent neural network in which a new approach for feature extraction using Log-Mel spectrogram representations is applied for seismic signals. The neural network is able to classify earthquake magnitudes from minor to major. Stanford Earthquake Dataset (STEAD) is used to train and validate the proposed method. The evaluation results demonstrate the efficacy of the proposed method in a rigorous event independent scenario, which can reach a F-score of 67% depending upon the earthquake magnitude.","PeriodicalId":395378,"journal":{"name":"2021 IEEE/SICE International Symposium on System Integration (SII)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/SICE International Symposium on System Integration (SII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF49454.2021.9382696","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We propose a novel framework for reliable automatic classification of earthquake magnitudes. Using deep learning methods, we aim to classify the earthquake magnitudes into different categories. The method is based on a convolutional recurrent neural network in which a new approach for feature extraction using Log-Mel spectrogram representations is applied for seismic signals. The neural network is able to classify earthquake magnitudes from minor to major. Stanford Earthquake Dataset (STEAD) is used to train and validate the proposed method. The evaluation results demonstrate the efficacy of the proposed method in a rigorous event independent scenario, which can reach a F-score of 67% depending upon the earthquake magnitude.
基于卷积递归网络的地震信号震级分类
提出了一种可靠的地震震级自动分类框架。使用深度学习方法,我们的目标是将地震震级划分为不同的类别。该方法基于卷积递归神经网络,将Log-Mel谱图表示应用于地震信号的特征提取。该神经网络能够将地震震级从小到大进行分类。使用斯坦福地震数据集(STEAD)对该方法进行训练和验证。评估结果表明,该方法在严格的事件独立情景下的有效性,根据地震震级的不同,其f值可达到67%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信