Reconfigurable miniature sensor nodes for condition monitoring

Teemu Nylanden, J. Boutellier, Karri Nikunen, J. Hannuksela, O. Silvén
{"title":"Reconfigurable miniature sensor nodes for condition monitoring","authors":"Teemu Nylanden, J. Boutellier, Karri Nikunen, J. Hannuksela, O. Silvén","doi":"10.1109/SAMOS.2012.6404164","DOIUrl":null,"url":null,"abstract":"The wireless sensor networks are being deployed at escalating rate for various application fields. The ever growing number of application areas requires a diverse set of algorithms with disparate processing needs. The wireless sensor networks also need to adapt to the prevailing energy conditions and processing requirements. The preceding reasons rule out the use of a single fixed design. Instead a general purpose design that can rapidly adapt to different conditions and requirements is desired. In lieu of the traditional inflexible wireless sensor node consisting of a micro-controller, radio transceiver, sensor array and energy storage, we propose a rapidly reconfigurable miniature sensor node, implemented with a transport triggered architecture processor on a low-power Flash FPGA. Also power consumption and silicon area usage comparison between 16-bit fixed and floating point and 32-bit floating point implementations is presented in this paper. The implemented processors and algorithms are intended for rolling bearing condition monitoring, but can be fully extended for other applications as well.","PeriodicalId":130275,"journal":{"name":"2012 International Conference on Embedded Computer Systems (SAMOS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Embedded Computer Systems (SAMOS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMOS.2012.6404164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

The wireless sensor networks are being deployed at escalating rate for various application fields. The ever growing number of application areas requires a diverse set of algorithms with disparate processing needs. The wireless sensor networks also need to adapt to the prevailing energy conditions and processing requirements. The preceding reasons rule out the use of a single fixed design. Instead a general purpose design that can rapidly adapt to different conditions and requirements is desired. In lieu of the traditional inflexible wireless sensor node consisting of a micro-controller, radio transceiver, sensor array and energy storage, we propose a rapidly reconfigurable miniature sensor node, implemented with a transport triggered architecture processor on a low-power Flash FPGA. Also power consumption and silicon area usage comparison between 16-bit fixed and floating point and 32-bit floating point implementations is presented in this paper. The implemented processors and algorithms are intended for rolling bearing condition monitoring, but can be fully extended for other applications as well.
用于状态监测的可重构微型传感器节点
无线传感器网络正以越来越快的速度被部署到各个应用领域。越来越多的应用领域需要一组具有不同处理需求的不同算法。无线传感器网络还需要适应当前的能源条件和处理要求。上述原因排除了单一固定设计的使用。相反,需要一种能够快速适应不同条件和要求的通用设计。代替传统的由微控制器、无线电收发器、传感器阵列和能量存储组成的不灵活的无线传感器节点,我们提出了一种快速可重构的微型传感器节点,在低功耗闪存FPGA上实现传输触发架构处理器。本文还比较了16位固定、浮点和32位浮点实现的功耗和芯片面积使用情况。所实现的处理器和算法旨在用于滚动轴承状态监测,但也可以完全扩展到其他应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信