Lexicographically Maximum Flows under an Arc Interdiction

Phanindra Prasad Bhandari, S. Khadka
{"title":"Lexicographically Maximum Flows under an Arc Interdiction","authors":"Phanindra Prasad Bhandari, S. Khadka","doi":"10.3126/jnms.v4i2.41459","DOIUrl":null,"url":null,"abstract":"Network interdiction problem arises when an unwanted agent attacks the network system to deteriorate its transshipment efficiency. Literature is flourished with models and solution approaches for the problem. This paper considers a single commodity lexicographic maximum flow problem on a directed network with capacitated vertices to study two network flow problems under an arc interdiction. In the first, the objective is to find an arc on input network to be destroyed so that the residual lexicographically maximum flow is lexicographically minimum. The second problem aims to find a flow pattern resulting lexicographically maximum flow on the input network so that the total residual flow, if an arc is destroyed, is maximum. The paper proposes strongly polynomial time solution procedures for these problems.","PeriodicalId":401623,"journal":{"name":"Journal of Nepal Mathematical Society","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nepal Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3126/jnms.v4i2.41459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Network interdiction problem arises when an unwanted agent attacks the network system to deteriorate its transshipment efficiency. Literature is flourished with models and solution approaches for the problem. This paper considers a single commodity lexicographic maximum flow problem on a directed network with capacitated vertices to study two network flow problems under an arc interdiction. In the first, the objective is to find an arc on input network to be destroyed so that the residual lexicographically maximum flow is lexicographically minimum. The second problem aims to find a flow pattern resulting lexicographically maximum flow on the input network so that the total residual flow, if an arc is destroyed, is maximum. The paper proposes strongly polynomial time solution procedures for these problems.
字典学上最大流量下的弧阻断
当不需要的代理攻击网络系统,降低其转运效率时,就会出现网络拦截问题。关于这一问题的模型和解决方法的文献层出不穷。本文考虑一个有向网络上的单商品字典最大流量问题,研究了在圆弧阻断下的两个网络流量问题。首先,目标是在输入网络上找到一个要被破坏的弧线,使剩余的字典最大流量是字典最小的。第二个问题的目的是找到一种流动模式,使输入网络上的字典最大流量,从而使总剩余流量在弧线被破坏时最大。本文提出了这些问题的强多项式时间解法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信