New clustering algorithm for identification of a nonlinear stochastic model

Troudi Ahmed, Houcine Lassad, Bouzbida Mohamed, Chaari Abdelkader
{"title":"New clustering algorithm for identification of a nonlinear stochastic model","authors":"Troudi Ahmed, Houcine Lassad, Bouzbida Mohamed, Chaari Abdelkader","doi":"10.1109/ICEESA.2013.6578495","DOIUrl":null,"url":null,"abstract":"Many clustering algorithms have been proposed in literature to identify the premise and consequence parameters involved in the TS fuzzy model. In this paper this parameters are estimated at the same time and this from the minimization of four optimization criteria. The proposed algorithm constitutes an extension of the algorithm proposed by J.Q. Chen in 1998. However, in this paper we introduced some modification on the optimization criteria and especially the last two criteria, thus we replaced the Euclidean distance by another non-Euclidean distance when calculating the fuzzy partition matrix. The purpose of these modifications is to introduce more robustness with the algorithm especially for highly nonlinear systems and those operating in a stochastic environment. The efficiency of the algorithm is tested on an electro-hydraulic system.","PeriodicalId":212631,"journal":{"name":"2013 International Conference on Electrical Engineering and Software Applications","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Electrical Engineering and Software Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEESA.2013.6578495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many clustering algorithms have been proposed in literature to identify the premise and consequence parameters involved in the TS fuzzy model. In this paper this parameters are estimated at the same time and this from the minimization of four optimization criteria. The proposed algorithm constitutes an extension of the algorithm proposed by J.Q. Chen in 1998. However, in this paper we introduced some modification on the optimization criteria and especially the last two criteria, thus we replaced the Euclidean distance by another non-Euclidean distance when calculating the fuzzy partition matrix. The purpose of these modifications is to introduce more robustness with the algorithm especially for highly nonlinear systems and those operating in a stochastic environment. The efficiency of the algorithm is tested on an electro-hydraulic system.
一种非线性随机模型识别的聚类新算法
文献中提出了许多聚类算法来识别TS模糊模型中涉及的前提参数和结果参数。在本文中,这些参数是同时估计的,这是从四个优化准则的最小化。本文提出的算法是对1998年J.Q. Chen提出的算法的扩展。然而,本文对优化准则,特别是后两个准则进行了一些修改,从而在计算模糊划分矩阵时用另一个非欧距离代替了欧氏距离。这些修改的目的是为算法引入更多的鲁棒性,特别是对于高度非线性系统和在随机环境中运行的系统。在电液系统上验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信