Federico Buffoni, G. Gianini, E. Damiani, M. Granitzer
{"title":"All-Implicants Neural Networks for Efficient Boolean Function Representation","authors":"Federico Buffoni, G. Gianini, E. Damiani, M. Granitzer","doi":"10.1109/ICCC.2018.00019","DOIUrl":null,"url":null,"abstract":"Boolean classifiers can be evolved by means of genetic algorithms. This can be done within an intercommunicating island system, of evolutionary niches, undergoing cycles that alternate long periods of isolation to short periods of information exchange. In these settings, the efficiency of the communication is a key requirement. In the present work, we address this requirement by providing a technique for efficiently representing and transmitting differential encodings of Boolean functions. We introduce a new class of Boolean Neural Networks (BNN), the all-implicants BNN, and show that this representation supports efficient update communication, better than the classical representation, based on truth tables.","PeriodicalId":306012,"journal":{"name":"2018 IEEE International Conference on Cognitive Computing (ICCC)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Cognitive Computing (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCC.2018.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Boolean classifiers can be evolved by means of genetic algorithms. This can be done within an intercommunicating island system, of evolutionary niches, undergoing cycles that alternate long periods of isolation to short periods of information exchange. In these settings, the efficiency of the communication is a key requirement. In the present work, we address this requirement by providing a technique for efficiently representing and transmitting differential encodings of Boolean functions. We introduce a new class of Boolean Neural Networks (BNN), the all-implicants BNN, and show that this representation supports efficient update communication, better than the classical representation, based on truth tables.