Design of the feedback controller for deep brain stimulation of the parkinsonian state based on the system identification

Huiyan Li, Chen Liu, Jiang Wang
{"title":"Design of the feedback controller for deep brain stimulation of the parkinsonian state based on the system identification","authors":"Huiyan Li, Chen Liu, Jiang Wang","doi":"10.1109/CCDC.2015.7161792","DOIUrl":null,"url":null,"abstract":"A novel closed-loop control strategy of deep brain stimulation is explored in this paper. By establishing an input-output model of the basal ganglia, the causality between the external stimuli and neuronal activities can be revealed. One-step ahead prediction constructs the probable future information of the tracking errors, which is used to guide the amplitude of the current pulse train stimuli. By comparing the traditional and iterative learning proportional control algorithms, the latter control strategy not only automatically can optimize the control signals without requirements of any particular knowledge on the details of model, but also can reduce the energy expenditure of the stimuli by accelerating the control process. This work may point to the potential value of model-based design of closed-loop controllers and pave the way towards the optimization of deep brain stimulation parameters and structures for Parkinson's disease.","PeriodicalId":273292,"journal":{"name":"The 27th Chinese Control and Decision Conference (2015 CCDC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 27th Chinese Control and Decision Conference (2015 CCDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCDC.2015.7161792","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A novel closed-loop control strategy of deep brain stimulation is explored in this paper. By establishing an input-output model of the basal ganglia, the causality between the external stimuli and neuronal activities can be revealed. One-step ahead prediction constructs the probable future information of the tracking errors, which is used to guide the amplitude of the current pulse train stimuli. By comparing the traditional and iterative learning proportional control algorithms, the latter control strategy not only automatically can optimize the control signals without requirements of any particular knowledge on the details of model, but also can reduce the energy expenditure of the stimuli by accelerating the control process. This work may point to the potential value of model-based design of closed-loop controllers and pave the way towards the optimization of deep brain stimulation parameters and structures for Parkinson's disease.
基于系统辨识的帕金森状态下深部脑刺激反馈控制器设计
提出了一种新的脑深部电刺激闭环控制策略。通过建立基底神经节的输入输出模型,可以揭示外部刺激与神经元活动之间的因果关系。一步预测构建了跟踪误差可能的未来信息,用于指导当前脉冲序列刺激的幅度。通过对比传统和迭代学习比例控制算法,迭代学习比例控制策略不仅可以在不需要对模型细节有任何特定了解的情况下自动优化控制信号,而且可以通过加速控制过程来减少刺激的能量消耗。这项工作可能指出基于模型的闭环控制器设计的潜在价值,并为帕金森病深部脑刺激参数和结构的优化铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信