Parallel Evolutionary Algorithms Performing Pairwise Comparisons

M. Cauwet, O. Teytaud, Shih-Yuan Chiu, Kuo-Min Lin, Shi-Jim Yen, D. St-Pierre, F. Teytaud
{"title":"Parallel Evolutionary Algorithms Performing Pairwise Comparisons","authors":"M. Cauwet, O. Teytaud, Shih-Yuan Chiu, Kuo-Min Lin, Shi-Jim Yen, D. St-Pierre, F. Teytaud","doi":"10.1145/2725494.2725499","DOIUrl":null,"url":null,"abstract":"We study mathematically and experimentally the convergence rate of differential evolution and particle swarm optimization for simple unimodal functions. Due to parallelization concerns, the focus is on lower bounds on the runtime, i.e. upper bounds on the speed-up, as a function of the population size. Two cases are particularly relevant: A population size of the same order of magnitude as the dimension and larger population sizes. We use the branching factor as a tool for proving bounds and get, as upper bounds, a linear speed-up for a population size similar to the dimension, and a logarithmic speed-up for larger population sizes. We then propose parametrizations for differential evolution and particle swarm optimization that reach these bounds.","PeriodicalId":112331,"journal":{"name":"Proceedings of the 2015 ACM Conference on Foundations of Genetic Algorithms XIII","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 ACM Conference on Foundations of Genetic Algorithms XIII","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2725494.2725499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study mathematically and experimentally the convergence rate of differential evolution and particle swarm optimization for simple unimodal functions. Due to parallelization concerns, the focus is on lower bounds on the runtime, i.e. upper bounds on the speed-up, as a function of the population size. Two cases are particularly relevant: A population size of the same order of magnitude as the dimension and larger population sizes. We use the branching factor as a tool for proving bounds and get, as upper bounds, a linear speed-up for a population size similar to the dimension, and a logarithmic speed-up for larger population sizes. We then propose parametrizations for differential evolution and particle swarm optimization that reach these bounds.
并行进化算法执行两两比较
本文从数学和实验两方面研究了简单单峰函数微分进化和粒子群优化的收敛速度。由于并行化的考虑,重点是运行时的下界,即加速的上界,作为人口大小的函数。有两种情况特别相关:与维度相同数量级的种群规模和更大的种群规模。我们使用分支因子作为证明边界的工具,并得到,作为上界,对于与维数相似的种群大小的线性加速,对于更大的种群大小的对数加速。然后,我们提出了达到这些界限的差分进化和粒子群优化的参数化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信