Optimizing area under the Roc curve using genetic algorithm

Yang Zhi, Guo-en Xia, W. Jin
{"title":"Optimizing area under the Roc curve using genetic algorithm","authors":"Yang Zhi, Guo-en Xia, W. Jin","doi":"10.1109/CSAE.2011.5953307","DOIUrl":null,"url":null,"abstract":"Class imbalance is one of the main obstacles in data mining. AUC is one of the main criterions to judge the performance of classifiers, which have been applied in class imbalanced datasets. So, optimizing AUC method has been realized by using gradient method to optimize it directly. But optimizing AUC method limits the shortcoming of gradient method, which is generally converged in local minima. So, this paper introduced the genetic algorithm into optimizing AUC method, and compared it with the previous one. The results of the experiment proving the method in this paper is more suitable for imbalanced datasets than the previous one.","PeriodicalId":138215,"journal":{"name":"2011 IEEE International Conference on Computer Science and Automation Engineering","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Computer Science and Automation Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSAE.2011.5953307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Class imbalance is one of the main obstacles in data mining. AUC is one of the main criterions to judge the performance of classifiers, which have been applied in class imbalanced datasets. So, optimizing AUC method has been realized by using gradient method to optimize it directly. But optimizing AUC method limits the shortcoming of gradient method, which is generally converged in local minima. So, this paper introduced the genetic algorithm into optimizing AUC method, and compared it with the previous one. The results of the experiment proving the method in this paper is more suitable for imbalanced datasets than the previous one.
利用遗传算法优化Roc曲线下面积
类不平衡是数据挖掘的主要障碍之一。AUC是判断分类器性能的主要标准之一,已在类不平衡数据集中得到应用。因此,采用梯度法直接对AUC方法进行优化,实现了AUC方法的优化。但优化AUC方法限制了梯度法一般收敛于局部极小值的缺点。因此,本文将遗传算法引入到AUC方法的优化中,并与已有的AUC方法进行了比较。实验结果表明,本文方法比以前的方法更适合于不平衡数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信