{"title":"Filling the gap between education and industry: evidence-based methods for introducing undergraduate students to HPC","authors":"Fabio Banchelli, F. Mantovani","doi":"10.1109/EduHPC.2018.00008","DOIUrl":null,"url":null,"abstract":"Educational institutions provide in most cases basic theoretical background covering several computational science topics. However, High-Performance Computing (HPC) and Parallel and Distributed Computing (PDC) markets require specialized technical profiles. Even the most skilled students are often not prepared to face production HPC applications of thousands of lines nor complex computational frameworks from other disciplines nor heterogeneous multinode machines accessed by hundreds of users. In this paper, we offer an educational package for filling this gap. Leveraging the 4-years experience of the Student Cluster Competition, we present our educational journey together with the lessons learned and the outcomes of our methodology. We show how, in a time span of a semester and an affordable budget, a university can implement an educational package preparing pupils for starting competitive professional careers. Our findings also highlight that 78% of the students exposed to our methods remain within the HPC high-education, research or industry.","PeriodicalId":315808,"journal":{"name":"2018 IEEE/ACM Workshop on Education for High-Performance Computing (EduHPC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM Workshop on Education for High-Performance Computing (EduHPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EduHPC.2018.00008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Educational institutions provide in most cases basic theoretical background covering several computational science topics. However, High-Performance Computing (HPC) and Parallel and Distributed Computing (PDC) markets require specialized technical profiles. Even the most skilled students are often not prepared to face production HPC applications of thousands of lines nor complex computational frameworks from other disciplines nor heterogeneous multinode machines accessed by hundreds of users. In this paper, we offer an educational package for filling this gap. Leveraging the 4-years experience of the Student Cluster Competition, we present our educational journey together with the lessons learned and the outcomes of our methodology. We show how, in a time span of a semester and an affordable budget, a university can implement an educational package preparing pupils for starting competitive professional careers. Our findings also highlight that 78% of the students exposed to our methods remain within the HPC high-education, research or industry.