Cross-Content Recommendation between Movie and Book using Machine Learning

Afra Nawar, Nazia Tabassum Toma, S. Al Mamun, M. S. Kaiser, M. Mahmud, M. A. Rahman
{"title":"Cross-Content Recommendation between Movie and Book using Machine Learning","authors":"Afra Nawar, Nazia Tabassum Toma, S. Al Mamun, M. S. Kaiser, M. Mahmud, M. A. Rahman","doi":"10.1109/AICT52784.2021.9620432","DOIUrl":null,"url":null,"abstract":"Machine learning-driven recommendation systems are widely used in today’s growing digital world. Existing movie and book recommender systems work using a collaborative approach, which can result in a lack of fresh and diverse content and a reduced surprise factor. There is also no platform providing recommendations across different contents, such as recommendations for books from movies and vice versa. In this paper, our main goal is to introduce a cross-content recommendation system based on the descriptions of movies and books and identifying similarities using natural language processing and machine learning algorithms. We processed a combined dataset of the two different types of contents, generated a TF-IDF vector of the descriptions and apply three different algorithms: K-means clustering, hierarchical clustering, and cosine similarity. There being no known cross-content recommendation research and no similar dataset with ground truth labels, we applied subjective reasoning to evaluate the results of our system.","PeriodicalId":150606,"journal":{"name":"2021 IEEE 15th International Conference on Application of Information and Communication Technologies (AICT)","volume":"143 8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 15th International Conference on Application of Information and Communication Technologies (AICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICT52784.2021.9620432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Machine learning-driven recommendation systems are widely used in today’s growing digital world. Existing movie and book recommender systems work using a collaborative approach, which can result in a lack of fresh and diverse content and a reduced surprise factor. There is also no platform providing recommendations across different contents, such as recommendations for books from movies and vice versa. In this paper, our main goal is to introduce a cross-content recommendation system based on the descriptions of movies and books and identifying similarities using natural language processing and machine learning algorithms. We processed a combined dataset of the two different types of contents, generated a TF-IDF vector of the descriptions and apply three different algorithms: K-means clustering, hierarchical clustering, and cosine similarity. There being no known cross-content recommendation research and no similar dataset with ground truth labels, we applied subjective reasoning to evaluate the results of our system.
使用机器学习在电影和书籍之间进行跨内容推荐
在当今日益增长的数字世界中,机器学习驱动的推荐系统被广泛使用。现有的电影和书籍推荐系统使用协作方式,这可能导致缺乏新鲜和多样化的内容,并且降低了惊喜因素。也没有平台提供跨不同内容的推荐,比如推荐电影中的书籍,反之亦然。在本文中,我们的主要目标是引入一个基于电影和书籍描述的跨内容推荐系统,并使用自然语言处理和机器学习算法识别相似性。我们处理了两种不同类型内容的组合数据集,生成了描述的TF-IDF向量,并应用了三种不同的算法:K-means聚类、分层聚类和余弦相似度。由于没有已知的跨内容推荐研究,也没有带有真实标签的类似数据集,我们应用主观推理来评估我们系统的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信