One-pass Synthesis for Field-coupled Nanocomputing Technologies

Marcel Walter, Winston Haaswijk, R. Wille, F. Sill, R. Drechsler
{"title":"One-pass Synthesis for Field-coupled Nanocomputing Technologies","authors":"Marcel Walter, Winston Haaswijk, R. Wille, F. Sill, R. Drechsler","doi":"10.1145/3394885.3431607","DOIUrl":null,"url":null,"abstract":"Field-coupled Nanocomputing (FCN) is a class of post-CMOS emerging technologies, which promises to overcome certain physical limitations of conventional solutions such as CMOS by allowing for high computational throughput with low power dissipation. Despite their promises, the design of corresponding FCN circuits is still in its infancy. In fact, state-of-the-art solutions still heavily rely on conventional synthesis approaches that do not take the tight physical constraints of FCN circuits (particularly with respect to routability and clocking) into account. Instead, physical design is conducted in a second step in which a classical logic network is mapped onto an FCN layout. Using this two-stage approach with a classical and FCN-oblivious logic network as an intermediate result, frequently leads to substantial quality loss or completely impractical results. In this work, we propose a one-pass synthesis scheme for FCN circuits, which conducts both steps, synthesis and physical design, in a single run. For the first time, this allows to generate exact, i. e., minimal FCN circuits for a given functionality.","PeriodicalId":186307,"journal":{"name":"2021 26th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 26th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3394885.3431607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Field-coupled Nanocomputing (FCN) is a class of post-CMOS emerging technologies, which promises to overcome certain physical limitations of conventional solutions such as CMOS by allowing for high computational throughput with low power dissipation. Despite their promises, the design of corresponding FCN circuits is still in its infancy. In fact, state-of-the-art solutions still heavily rely on conventional synthesis approaches that do not take the tight physical constraints of FCN circuits (particularly with respect to routability and clocking) into account. Instead, physical design is conducted in a second step in which a classical logic network is mapped onto an FCN layout. Using this two-stage approach with a classical and FCN-oblivious logic network as an intermediate result, frequently leads to substantial quality loss or completely impractical results. In this work, we propose a one-pass synthesis scheme for FCN circuits, which conducts both steps, synthesis and physical design, in a single run. For the first time, this allows to generate exact, i. e., minimal FCN circuits for a given functionality.
场耦合纳米计算技术的一次合成
场耦合纳米计算(FCN)是一类后CMOS新兴技术,它有望克服传统解决方案(如CMOS)的某些物理限制,允许高计算吞吐量和低功耗。尽管他们的承诺,相应的FCN电路的设计仍处于起步阶段。事实上,最先进的解决方案仍然严重依赖于传统的综合方法,这些方法没有考虑到FCN电路的严格物理限制(特别是在可达性和时钟方面)。相反,物理设计是在第二步中进行的,其中将经典逻辑网络映射到FCN布局上。使用这种两阶段的方法与经典和fcn无关的逻辑网络作为中间结果,经常导致大量的质量损失或完全不切实际的结果。在这项工作中,我们提出了一种FCN电路的单通合成方案,该方案在一次运行中进行合成和物理设计两个步骤。这是第一次允许为给定功能生成精确的,即最小的FCN电路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信