A change in the air temperature inside a 20-liter chamber when air is added from the receiver

N. Poletaev
{"title":"A change in the air temperature inside a 20-liter chamber when air is added from the receiver","authors":"N. Poletaev","doi":"10.22227/0869-7493.2021.30.05.23-29","DOIUrl":null,"url":null,"abstract":"Introduction. One of the reasons for the overestimation of the explosion hazard of dust inside a (20 ± 2)-liter chamber is the elevated initial temperature of the air suspension. The initial temperature is also raised by the process of filling the pre-emptied chamber with air from the receiver, used to distribute dust over the chamber. In this work, an increase in the air temperature inside an 18.7-liter chamber was identified in an experiment for the case of addition of air from the receiver.The methodology of an experiment. The air temperature in the chamber was measured at the time when the air from the receiver was added using a WR 5/20 thermoelectric converter (a thermocouple). The thermocouple junction was located at the distance of 70 mm from the inner wall of the chamber. The thermocouple signal was processed by an MCLab PRO programmable logic controller (the time resolution is 1 ms).Research results. The measuring instruments recorded an increase in the temperature of the thermocouple junction by +14 degrees. Due to the comparability of the inertia of the thermocouple (3 s) and the characteristic time of air cooling by the chamber walls (5 s), the measurement results underestimated the real value of a jump in the air temperature inside the chamber. Measurement results were refined using a simple model of heat transfer between the objects involved in the process (thermocouple junction – air – chamber wall) that entailed the exponential relaxation of the temperature difference over time. As a result, an estimated increase in the initial temperature inside the chamber of +30 degrees was identified.Results and discussion. The temperature jump by +30 degrees makes a noticeable contribution to the total jump in the initial temperature, which was previously tied solely to the burnout of the ignition source (+80 degrees).Conclusions. Given the known increase in the temperature inside the chamber caused by the burnout ofa standard ignition source (2 kJ), the real value of the initial temperature of the environment can reach 135 °C in the course of studying dust in a (20 ± 2)-liter chamber.","PeriodicalId":169739,"journal":{"name":"Pozharovzryvobezopasnost/Fire and Explosion Safety","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pozharovzryvobezopasnost/Fire and Explosion Safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22227/0869-7493.2021.30.05.23-29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction. One of the reasons for the overestimation of the explosion hazard of dust inside a (20 ± 2)-liter chamber is the elevated initial temperature of the air suspension. The initial temperature is also raised by the process of filling the pre-emptied chamber with air from the receiver, used to distribute dust over the chamber. In this work, an increase in the air temperature inside an 18.7-liter chamber was identified in an experiment for the case of addition of air from the receiver.The methodology of an experiment. The air temperature in the chamber was measured at the time when the air from the receiver was added using a WR 5/20 thermoelectric converter (a thermocouple). The thermocouple junction was located at the distance of 70 mm from the inner wall of the chamber. The thermocouple signal was processed by an MCLab PRO programmable logic controller (the time resolution is 1 ms).Research results. The measuring instruments recorded an increase in the temperature of the thermocouple junction by +14 degrees. Due to the comparability of the inertia of the thermocouple (3 s) and the characteristic time of air cooling by the chamber walls (5 s), the measurement results underestimated the real value of a jump in the air temperature inside the chamber. Measurement results were refined using a simple model of heat transfer between the objects involved in the process (thermocouple junction – air – chamber wall) that entailed the exponential relaxation of the temperature difference over time. As a result, an estimated increase in the initial temperature inside the chamber of +30 degrees was identified.Results and discussion. The temperature jump by +30 degrees makes a noticeable contribution to the total jump in the initial temperature, which was previously tied solely to the burnout of the ignition source (+80 degrees).Conclusions. Given the known increase in the temperature inside the chamber caused by the burnout ofa standard ignition source (2 kJ), the real value of the initial temperature of the environment can reach 135 °C in the course of studying dust in a (20 ± 2)-liter chamber.
当从接收器中加入空气时,20升燃烧室内空气温度的变化
介绍。(20±2)l气室粉尘爆炸危险性过高的原因之一是空气悬架初始温度过高。初始温度也通过从接收器向预先清空的腔室填充空气的过程来提高,用于在腔室上分布灰尘。在这项工作中,在一个实验中,在一个18.7升的腔室内发现了从接收器添加空气的情况下,空气温度的升高。实验方法实验的方法当使用WR 5/20热电转换器(热电偶)加入来自接收器的空气时,测量腔内的空气温度。热电偶结位于距离腔室内壁70 mm处。热电偶信号由MCLab PRO可编程逻辑控制器处理(时间分辨率为1ms)。研究的结果。测量仪器记录到热电偶结的温度增加了+14度。由于热电偶的惯性(3秒)和空气被腔壁冷却的特征时间(5秒)的可比性,测量结果低估了腔内空气温度跳变的真实值。测量结果使用过程中涉及的物体(热电偶结-空气-室壁)之间的传热的简单模型进行了改进,该模型涉及温度差异随时间的指数弛豫。结果,确定了腔内初始温度增加+30度的估计。结果和讨论。温度跳+30度使一个显著的贡献,总跳在初始温度,这是以前单独绑定的燃尽的点火源(+80度)。已知标准点火源(2kj)燃尽引起的室内温度升高,在研究(20±2)升室内粉尘的过程中,环境初始温度的真实值可以达到135℃。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信