E. Guen, D. Renahy, M. Massoud, J. Bluet, P. Chapuis, S. Gomés
{"title":"Calibration methodologies for scanning thermal microscopy","authors":"E. Guen, D. Renahy, M. Massoud, J. Bluet, P. Chapuis, S. Gomés","doi":"10.1109/THERMINIC.2016.7749036","DOIUrl":null,"url":null,"abstract":"This work analyses the heat transfer between various scanning thermal microscopy (SThM) probes and samples. In order to perform quantitative measurements with SThM techniques, we have developed well-established and reproducible calibration methodologies. We present here two approaches of the SThM measurement: one to measure thermal conductivity of solid materials with a Wollaston SThM microprobe and a second one to evaluate phase transition temperatures of polymeric materials with a silicon low-doped nanoprobe. Based on the comparison of experimental data and modeling results, we have estimated the local resolution of the microprobe to be associated to a radius of 300 nm. Concerning the nanoprobe, we have demonstrated the strong dependence of measurement on sample topography and roughness.","PeriodicalId":143150,"journal":{"name":"2016 22nd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 22nd International Workshop on Thermal Investigations of ICs and Systems (THERMINIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/THERMINIC.2016.7749036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This work analyses the heat transfer between various scanning thermal microscopy (SThM) probes and samples. In order to perform quantitative measurements with SThM techniques, we have developed well-established and reproducible calibration methodologies. We present here two approaches of the SThM measurement: one to measure thermal conductivity of solid materials with a Wollaston SThM microprobe and a second one to evaluate phase transition temperatures of polymeric materials with a silicon low-doped nanoprobe. Based on the comparison of experimental data and modeling results, we have estimated the local resolution of the microprobe to be associated to a radius of 300 nm. Concerning the nanoprobe, we have demonstrated the strong dependence of measurement on sample topography and roughness.