CRU-Net: A Deep Learning Network for Semantic Segmentation of Pathological Tissue Slices

Yang Li
{"title":"CRU-Net: A Deep Learning Network for Semantic Segmentation of Pathological Tissue Slices","authors":"Yang Li","doi":"10.1109/AIID51893.2021.9456469","DOIUrl":null,"url":null,"abstract":"The study of cell nuclei is the starting point of modern medical pathology analysis and new drug development, and the semantic segmentation of pathological tissue slice images is a fundamental task of cell nucleus research[1]. This paper proposes a deep learning convolutional neural network for semantic segmentation of cell nuclei, where V-Net [6] is used as the basic framework for segmentation, and then the channel attention mechanism is added to its skip connections. The experiment is evaluated on the dataset of pathological tissue slice images, publicly released in the 2018 Kaggle Challenge data science bowl. The experimental results show that the improved deep learning convolutional neural network achieves excellent performance on the semantic segmentation task of pathological tissue slice images, and can be used as a tool for automatic segmentation of pathological tissue slice images.","PeriodicalId":412698,"journal":{"name":"2021 IEEE International Conference on Artificial Intelligence and Industrial Design (AIID)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Artificial Intelligence and Industrial Design (AIID)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIID51893.2021.9456469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The study of cell nuclei is the starting point of modern medical pathology analysis and new drug development, and the semantic segmentation of pathological tissue slice images is a fundamental task of cell nucleus research[1]. This paper proposes a deep learning convolutional neural network for semantic segmentation of cell nuclei, where V-Net [6] is used as the basic framework for segmentation, and then the channel attention mechanism is added to its skip connections. The experiment is evaluated on the dataset of pathological tissue slice images, publicly released in the 2018 Kaggle Challenge data science bowl. The experimental results show that the improved deep learning convolutional neural network achieves excellent performance on the semantic segmentation task of pathological tissue slice images, and can be used as a tool for automatic segmentation of pathological tissue slice images.
一种用于病理组织切片语义分割的深度学习网络
细胞核的研究是现代医学病理分析和新药开发的起点,病理组织切片图像的语义分割是细胞核研究的一项基本任务[1]。本文提出了一种用于细胞核语义切分的深度学习卷积神经网络,采用V-Net[6]作为切分的基本框架,并在其跳跃连接中加入通道注意机制。实验是在2018年Kaggle挑战赛数据科学碗上公开发布的病理组织切片图像数据集上进行评估的。实验结果表明,改进的深度学习卷积神经网络在病理组织切片图像的语义分割任务上取得了优异的性能,可以作为病理组织切片图像自动分割的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信