{"title":"Universal Bundles and Classifying Spaces","authors":"L. Tu","doi":"10.23943/PRINCETON/9780691191751.003.0005","DOIUrl":null,"url":null,"abstract":"This chapter evaluates universal bundles and classifying spaces. As before, G is a topological group. In defining the equivariant cohomology of a G-space M, one needs a weakly contractible space EG on which G acts freely. Such a space is provided by the total space of a universal G-bundle, a bundle from which every principal G-bundle can be pulled back. The base BG of a universal G-bundle is called a classifying space for G. By Whitehead's theorem, for CW-complexes, weakly contractible is the same as contractible. In the category of CW complexes (with continuous maps as morphisms), a principal G-bundle whose total space is contractible turns out to be precisely a universal G-bundle.","PeriodicalId":272846,"journal":{"name":"Introductory Lectures on Equivariant Cohomology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Introductory Lectures on Equivariant Cohomology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23943/PRINCETON/9780691191751.003.0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This chapter evaluates universal bundles and classifying spaces. As before, G is a topological group. In defining the equivariant cohomology of a G-space M, one needs a weakly contractible space EG on which G acts freely. Such a space is provided by the total space of a universal G-bundle, a bundle from which every principal G-bundle can be pulled back. The base BG of a universal G-bundle is called a classifying space for G. By Whitehead's theorem, for CW-complexes, weakly contractible is the same as contractible. In the category of CW complexes (with continuous maps as morphisms), a principal G-bundle whose total space is contractible turns out to be precisely a universal G-bundle.