Universal Bundles and Classifying Spaces

L. Tu
{"title":"Universal Bundles and Classifying Spaces","authors":"L. Tu","doi":"10.23943/PRINCETON/9780691191751.003.0005","DOIUrl":null,"url":null,"abstract":"This chapter evaluates universal bundles and classifying spaces. As before, G is a topological group. In defining the equivariant cohomology of a G-space M, one needs a weakly contractible space EG on which G acts freely. Such a space is provided by the total space of a universal G-bundle, a bundle from which every principal G-bundle can be pulled back. The base BG of a universal G-bundle is called a classifying space for G. By Whitehead's theorem, for CW-complexes, weakly contractible is the same as contractible. In the category of CW complexes (with continuous maps as morphisms), a principal G-bundle whose total space is contractible turns out to be precisely a universal G-bundle.","PeriodicalId":272846,"journal":{"name":"Introductory Lectures on Equivariant Cohomology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Introductory Lectures on Equivariant Cohomology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23943/PRINCETON/9780691191751.003.0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This chapter evaluates universal bundles and classifying spaces. As before, G is a topological group. In defining the equivariant cohomology of a G-space M, one needs a weakly contractible space EG on which G acts freely. Such a space is provided by the total space of a universal G-bundle, a bundle from which every principal G-bundle can be pulled back. The base BG of a universal G-bundle is called a classifying space for G. By Whitehead's theorem, for CW-complexes, weakly contractible is the same as contractible. In the category of CW complexes (with continuous maps as morphisms), a principal G-bundle whose total space is contractible turns out to be precisely a universal G-bundle.
泛束与分类空间
本章计算了泛束和分类空间。和前面一样,G是一个拓扑群。在定义G空间M的等变上同调时,需要一个G在其上自由作用的弱可缩并空间EG。这样的空间是由一个全称g束的总空间提供的,在这个全称g束中,每个主g束都可以被拉回来。全称g束的基BG称为g的分类空间。根据Whitehead定理,对于cw -复形,弱可收缩与可收缩是相同的。在CW复形(连续映射为态射)的范畴中,一个总空间可收缩的主g束被证明是一个精确的全称g束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信