Spatial-Temporal Transformer for Crime Recognition in Surveillance Videos

Kayleigh Boekhoudt, Estefanía Talavera
{"title":"Spatial-Temporal Transformer for Crime Recognition in Surveillance Videos","authors":"Kayleigh Boekhoudt, Estefanía Talavera","doi":"10.1109/AVSS56176.2022.9959414","DOIUrl":null,"url":null,"abstract":"Human-related crime recognition from surveillance videos becomes an even more challenging task when dealing with relatively similar human actions. We propose a transformer-based model that relies on the spatial-temporal representation of extracted skeletal trajectories for fine-grained classification. We validate the effectiveness of our model on the complex HR-Crime dataset consisting of videos representing 13 categories of human-related crimes. Quantitative and qualitative results suggest that building a transformer architecture with coupled spatial and temporal modules enables the model to compete in performance while improving intrinsic interpretability.","PeriodicalId":408581,"journal":{"name":"2022 18th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 18th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS56176.2022.9959414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Human-related crime recognition from surveillance videos becomes an even more challenging task when dealing with relatively similar human actions. We propose a transformer-based model that relies on the spatial-temporal representation of extracted skeletal trajectories for fine-grained classification. We validate the effectiveness of our model on the complex HR-Crime dataset consisting of videos representing 13 categories of human-related crimes. Quantitative and qualitative results suggest that building a transformer architecture with coupled spatial and temporal modules enables the model to compete in performance while improving intrinsic interpretability.
基于时空变换的监控视频犯罪识别
当处理相对相似的人类行为时,从监控视频中识别与人类有关的犯罪变得更具挑战性。我们提出了一个基于变压器的模型,该模型依赖于提取的骨骼轨迹的时空表示进行细粒度分类。我们在复杂的HR-Crime数据集上验证了我们模型的有效性,该数据集由代表13类人类相关犯罪的视频组成。定量和定性结果表明,建立具有耦合空间和时间模块的变压器体系结构使模型在性能上具有竞争力,同时提高了内在的可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信