Predictive Joint Distribution of the Mass and Speed Profile to Improve Aircraft Climb Prediction

Richard Alligier
{"title":"Predictive Joint Distribution of the Mass and Speed Profile to Improve Aircraft Climb Prediction","authors":"Richard Alligier","doi":"10.1109/AIDA-AT48540.2020.9049196","DOIUrl":null,"url":null,"abstract":"Ground-based aircraft trajectory prediction is a major concern in air traffic control and management. Focusing on the climb phase, we predict some of the unknown point-mass model parameters. These unknown parameters are the mass and the speed intent. This speed intent is parameterized by three values (cas1, cas2, $M$). These missing parameters might be useful to predict the future trajectory of a climbing aircraft. In this work, an ensemble of neural networks uses the observed past trajectory of the considered aircraft as input and predicts a Gaussian Mixture Model (GMM) modeling the joint distribution of (mass, cas1, cas2, $M$). Ideally, this predicted distribution will be close to a conditional distribution: the distribution of possible (mass, cas1, cas2, $M$) values given the observed past trajectory of the considered aircraft. This study relies on ADS-B data coming from The OpenSky Network. It contains the climbing segments of the year 2017 detected by this sensor network. The obtained data set contains millions of climbing segments from all over the world. Using this data, we show that using the proposed predictive model instead of a regression model brings almost as much information as using a regression model instead of a simple mean. The data set and the machine learning code are publicly available.","PeriodicalId":106277,"journal":{"name":"2020 International Conference on Artificial Intelligence and Data Analytics for Air Transportation (AIDA-AT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Artificial Intelligence and Data Analytics for Air Transportation (AIDA-AT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIDA-AT48540.2020.9049196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Ground-based aircraft trajectory prediction is a major concern in air traffic control and management. Focusing on the climb phase, we predict some of the unknown point-mass model parameters. These unknown parameters are the mass and the speed intent. This speed intent is parameterized by three values (cas1, cas2, $M$). These missing parameters might be useful to predict the future trajectory of a climbing aircraft. In this work, an ensemble of neural networks uses the observed past trajectory of the considered aircraft as input and predicts a Gaussian Mixture Model (GMM) modeling the joint distribution of (mass, cas1, cas2, $M$). Ideally, this predicted distribution will be close to a conditional distribution: the distribution of possible (mass, cas1, cas2, $M$) values given the observed past trajectory of the considered aircraft. This study relies on ADS-B data coming from The OpenSky Network. It contains the climbing segments of the year 2017 detected by this sensor network. The obtained data set contains millions of climbing segments from all over the world. Using this data, we show that using the proposed predictive model instead of a regression model brings almost as much information as using a regression model instead of a simple mean. The data set and the machine learning code are publicly available.
提高飞机爬升预测的质量和速度剖面预测联合分布
地面飞行器轨迹预测是空中交通管制和管理中的一个重要问题。针对爬升阶段,预测了一些未知的点质量模型参数。这些未知参数是质量和速度意图。这个速度意图由三个值(cas1, cas2, $M$)参数化。这些缺失的参数可能对预测爬升飞机的未来轨迹有用。在这项工作中,一组神经网络使用观察到的飞机过去的轨迹作为输入,并预测高斯混合模型(GMM),该模型模拟了(mass, cas1, cas2, $M$)的联合分布。理想情况下,该预测分布将接近条件分布:给定所考虑的飞机过去观察到的轨迹,可能的(质量,cas1, cas2, $M$)值的分布。这项研究依赖于来自开放天空网络的ADS-B数据。它包含了该传感器网络检测到的2017年的攀登段。获得的数据集包含来自世界各地的数百万个攀登段。使用这些数据,我们表明,使用提出的预测模型而不是回归模型所带来的信息几乎与使用回归模型而不是简单均值所带来的信息一样多。数据集和机器学习代码是公开的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信