Back propagation as a test of the efficient markets hypothesis

G. Tsibouris, M. Zeidenberg
{"title":"Back propagation as a test of the efficient markets hypothesis","authors":"G. Tsibouris, M. Zeidenberg","doi":"10.1109/HICSS.1992.183443","DOIUrl":null,"url":null,"abstract":"The paper presents some research on the application of artificial neural networks to economic modeling. The efficient markets hypothesis (EMH) states that at any time, the price of a security fully captures all known information about that stock, so the price behaves like a random walk in time, except when there are changes in information. The authors test whether a non-linear statistical method, error back propagation, can do better than chance in forecasting stock trends. An error back propagation model is estimated at different levels of time aggregation (daily and monthly) on stock price and stock index returns. The paper brings forth some new and encouraging results on the ability of neural network models to predict the direction of stock price movements and to account for some of the nonlinearities found in stock return data.<<ETX>>","PeriodicalId":103288,"journal":{"name":"Proceedings of the Twenty-Fifth Hawaii International Conference on System Sciences","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twenty-Fifth Hawaii International Conference on System Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HICSS.1992.183443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The paper presents some research on the application of artificial neural networks to economic modeling. The efficient markets hypothesis (EMH) states that at any time, the price of a security fully captures all known information about that stock, so the price behaves like a random walk in time, except when there are changes in information. The authors test whether a non-linear statistical method, error back propagation, can do better than chance in forecasting stock trends. An error back propagation model is estimated at different levels of time aggregation (daily and monthly) on stock price and stock index returns. The paper brings forth some new and encouraging results on the ability of neural network models to predict the direction of stock price movements and to account for some of the nonlinearities found in stock return data.<>
反向传播作为有效市场假说的检验
本文对人工神经网络在经济建模中的应用进行了研究。有效市场假说(EMH)指出,在任何时候,证券的价格都能充分捕捉到有关该股票的所有已知信息,因此,除非信息发生变化,否则价格表现得像时间上的随机游走。作者测试了一种非线性统计方法,误差反向传播,在预测股票趋势方面是否比机会更好。在不同的时间聚合水平(日和月)上估计了股票价格和股票指数收益的误差反向传播模型。本文在神经网络模型预测股票价格变动方向和解释股票收益数据中的一些非线性的能力方面,提出了一些令人鼓舞的新结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信