Homogeneous Patch Based FCM Algorithm for Brain MR Image Segmentation

Qiang Chen, Zexuan Ji, Quansen Sun, D. Xia
{"title":"Homogeneous Patch Based FCM Algorithm for Brain MR Image Segmentation","authors":"Qiang Chen, Zexuan Ji, Quansen Sun, D. Xia","doi":"10.1109/CCPR.2009.5344038","DOIUrl":null,"url":null,"abstract":"This paper presents a homogeneous patch based fuzzy c-means (FCM) clustering algorithm for brain magnetic resonance (MR) image segmentation. Currently, FCM is mainly improved by incorporating local spatial information for noise immunity. The proposed algorithm is based on image patch space, which can avoid introducing an extra control parameter for local spatial restriction. In order to decrease the edge blurring caused by local spatial restriction, the local polynomial approximation-intersection of confidence intervals (LPA-ICI) technique is used to construct the homogeneous patch. Brain MR image segmentation results indicate that the proposed algorithm is better than the other improved FCM algorithms that incorporate local spatial information, while the detail preservation need to be improved.","PeriodicalId":354468,"journal":{"name":"2009 Chinese Conference on Pattern Recognition","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Chinese Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCPR.2009.5344038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a homogeneous patch based fuzzy c-means (FCM) clustering algorithm for brain magnetic resonance (MR) image segmentation. Currently, FCM is mainly improved by incorporating local spatial information for noise immunity. The proposed algorithm is based on image patch space, which can avoid introducing an extra control parameter for local spatial restriction. In order to decrease the edge blurring caused by local spatial restriction, the local polynomial approximation-intersection of confidence intervals (LPA-ICI) technique is used to construct the homogeneous patch. Brain MR image segmentation results indicate that the proposed algorithm is better than the other improved FCM algorithms that incorporate local spatial information, while the detail preservation need to be improved.
基于均匀斑块的脑磁共振图像分割FCM算法
提出了一种基于均匀斑块的模糊c均值聚类算法,用于脑磁共振图像分割。目前,FCM主要通过结合局部空间信息来提高噪声抗扰性。该算法基于图像斑块空间,避免了引入额外的局部空间控制参数。为了减少由于局部空间限制造成的边缘模糊,采用局部多项式近似置信区间相交(LPA-ICI)技术构造齐次贴片。脑MR图像分割结果表明,该算法比其他融合局部空间信息的改进FCM算法效果更好,但在细节保留方面有待改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信