Prostate Segmentation with Texture Enhanced Active Appearance Model

S. Ghose, A. Oliver, R. Martí, X. Lladó, J. Freixenet, J. Vilanova, F. Mériaudeau
{"title":"Prostate Segmentation with Texture Enhanced Active Appearance Model","authors":"S. Ghose, A. Oliver, R. Martí, X. Lladó, J. Freixenet, J. Vilanova, F. Mériaudeau","doi":"10.1109/SITIS.2010.14","DOIUrl":null,"url":null,"abstract":"Prostate contour segmented from Trans Rectal Ultra Sound (TRUS) and Magnetic Resonance (MR) images could improve inter-modality registration accuracy and reduce computational complexity of the procedure. However, prostate segmentation in each of these modalities is a challenging task in presence of imaging artifacts, intensity heterogeneities, and large inter patient shape variabilities of the prostate. We propose to use Haar wavelet approximation coefficients to extract texture features of the prostate region in both modalities to guide a deformable parametric model to segment the prostate in a multi-resolution framework. Principal Component Analysis (PCA) of the shape and texture information of the prostate region obtained from the training data aids contour propagation of the deformable parametric model. Prior knowledge of the optimization space is utilized for optimal segmentation of the prostate. Our method achieves a mean Dice Similarity Coefficient (DSC) value of 0.95±0.01, with mean segmentation time of 0.72±0.05 seconds in a leave-one-out validation framework with 25 TRUS images grabbed from a video sequence. DSC value of 0.88 ± 0.06 with a mean segmentation time of 0.81 ± 0.02 seconds was recorded for MR images when validated with 15 central slice images of 15 datasets from the MICCAI prostate segmentation challenge 2009. Our proposed method performs computationally efficient accurate multi-modal prostate segmentation in presence of intensity heterogeneities and imaging artifacts.","PeriodicalId":128396,"journal":{"name":"2010 Sixth International Conference on Signal-Image Technology and Internet Based Systems","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Sixth International Conference on Signal-Image Technology and Internet Based Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SITIS.2010.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Prostate contour segmented from Trans Rectal Ultra Sound (TRUS) and Magnetic Resonance (MR) images could improve inter-modality registration accuracy and reduce computational complexity of the procedure. However, prostate segmentation in each of these modalities is a challenging task in presence of imaging artifacts, intensity heterogeneities, and large inter patient shape variabilities of the prostate. We propose to use Haar wavelet approximation coefficients to extract texture features of the prostate region in both modalities to guide a deformable parametric model to segment the prostate in a multi-resolution framework. Principal Component Analysis (PCA) of the shape and texture information of the prostate region obtained from the training data aids contour propagation of the deformable parametric model. Prior knowledge of the optimization space is utilized for optimal segmentation of the prostate. Our method achieves a mean Dice Similarity Coefficient (DSC) value of 0.95±0.01, with mean segmentation time of 0.72±0.05 seconds in a leave-one-out validation framework with 25 TRUS images grabbed from a video sequence. DSC value of 0.88 ± 0.06 with a mean segmentation time of 0.81 ± 0.02 seconds was recorded for MR images when validated with 15 central slice images of 15 datasets from the MICCAI prostate segmentation challenge 2009. Our proposed method performs computationally efficient accurate multi-modal prostate segmentation in presence of intensity heterogeneities and imaging artifacts.
基于纹理增强活动外观模型的前列腺分割
从经直肠超声(TRUS)和磁共振(MR)图像中分割前列腺轮廓可以提高模态间配准精度,降低计算复杂度。然而,由于存在成像伪影、强度异质性和前列腺形状在患者之间的巨大差异,每种模式下的前列腺分割都是一项具有挑战性的任务。我们建议使用Haar小波近似系数提取前列腺区域的纹理特征,以指导可变形的参数模型在多分辨率框架中分割前列腺。从训练数据中获得前列腺区域形状和纹理信息的主成分分析(PCA)有助于变形参数模型的轮廓传播。利用优化空间的先验知识对前列腺进行最佳分割。该方法在留一验证框架下获得了平均DSC值为0.95±0.01,平均分割时间为0.72±0.05秒。利用MICCAI前列腺分割挑战2009的15个数据集的15张中心切片图像进行验证,MR图像的DSC值为0.88±0.06,平均分割时间为0.81±0.02秒。我们提出的方法在存在强度异质性和成像伪影的情况下执行计算效率高的精确多模态前列腺分割。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信