Super-Resolution using Motion and Defocus Cues

K. Suresh, A. Rajagopalan
{"title":"Super-Resolution using Motion and Defocus Cues","authors":"K. Suresh, A. Rajagopalan","doi":"10.1109/ICIP.2007.4379992","DOIUrl":null,"url":null,"abstract":"Reconstruction-based super-resolution algorithms use either sub-pixel shifts or relative blur among low-resolution observations as a cue to obtain a high-resolution image. In this paper, we propose a super-resolution algorithm that exploits the information available in the low-resolution observations due to both sub-pixel shifts and relative blur to yield a better quality image. Performance analysis is carried out based on the Cramer-Rao lower bound. Several experimental results on synthetic and real images are given for validation.","PeriodicalId":131177,"journal":{"name":"2007 IEEE International Conference on Image Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2007.4379992","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Reconstruction-based super-resolution algorithms use either sub-pixel shifts or relative blur among low-resolution observations as a cue to obtain a high-resolution image. In this paper, we propose a super-resolution algorithm that exploits the information available in the low-resolution observations due to both sub-pixel shifts and relative blur to yield a better quality image. Performance analysis is carried out based on the Cramer-Rao lower bound. Several experimental results on synthetic and real images are given for validation.
使用运动和散焦线索的超分辨率
基于重建的超分辨率算法在低分辨率观测中使用亚像素偏移或相对模糊作为获得高分辨率图像的线索。在本文中,我们提出了一种超分辨率算法,该算法利用由于亚像素偏移和相对模糊而导致的低分辨率观测中的可用信息来产生更好质量的图像。基于Cramer-Rao下界进行了性能分析。给出了合成图像和真实图像的实验结果进行验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信