Predicting Credit Card Holder Churn in Banks of China Using Data Mining and MCDM

Guoxun Wang, Liang Liu, Yi Peng, G. Nie, Gang Kou, Yong Shi
{"title":"Predicting Credit Card Holder Churn in Banks of China Using Data Mining and MCDM","authors":"Guoxun Wang, Liang Liu, Yi Peng, G. Nie, Gang Kou, Yong Shi","doi":"10.1109/WI-IAT.2010.237","DOIUrl":null,"url":null,"abstract":"Nowadays, with increasingly intense competition in the market, major banks pay more attention on customer relationship management. A real-time and effective credit card holders’ churn analysis is important and helpful for bankers to maintain credit card holders. In this research we apply 12 classification algorithms in a real-life credit card holders’ behaviors dataset from a major commercial bank in China to construct a predictive churn model. Furthermore, a comparison is made between the predictive performance of classification algorithms based on Multi-Criteria Decision Making techniques such as PROMETHEE II and TOPSIS. The research results show that banks can choose the most appropriate classification algorithm/s for customer churn prediction for noisy credit card holders’ behaviors data using MCDM.","PeriodicalId":340211,"journal":{"name":"2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2010.237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

Abstract

Nowadays, with increasingly intense competition in the market, major banks pay more attention on customer relationship management. A real-time and effective credit card holders’ churn analysis is important and helpful for bankers to maintain credit card holders. In this research we apply 12 classification algorithms in a real-life credit card holders’ behaviors dataset from a major commercial bank in China to construct a predictive churn model. Furthermore, a comparison is made between the predictive performance of classification algorithms based on Multi-Criteria Decision Making techniques such as PROMETHEE II and TOPSIS. The research results show that banks can choose the most appropriate classification algorithm/s for customer churn prediction for noisy credit card holders’ behaviors data using MCDM.
基于数据挖掘和MCDM的中国银行信用卡持卡人流失预测
在市场竞争日益激烈的今天,各大银行越来越重视客户关系管理。实时有效的信用卡持卡人流失率分析对银行维护信用卡持卡人具有重要的指导意义。在本研究中,我们采用12种分类算法,在中国某大型商业银行的真实信用卡持卡人行为数据集中构建预测流失模型。此外,还比较了PROMETHEE II和TOPSIS等基于多准则决策技术的分类算法的预测性能。研究结果表明,银行可以利用MCDM对有噪声的信用卡持卡人行为数据选择最合适的分类算法进行客户流失预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信