Local Hammerstein modeling based on self-organizing map

Jeongho Cho, J. Príncipe, M. Motter
{"title":"Local Hammerstein modeling based on self-organizing map","authors":"Jeongho Cho, J. Príncipe, M. Motter","doi":"10.1109/NNSP.2003.1318080","DOIUrl":null,"url":null,"abstract":"This work presents a method to determine a local polynomial model from a finite number of measurements of the inputs and outputs for Hammerstein systems which are a zero-memory nonlinearity followed by a linear filter. Self-organizing map (SOM) is utilized to cluster the dynamics in the input-output joint space, where processing-elements (PEs) are extended with local models to enable the original algorithm to learn input-output relationships with reasonable accuracy. Moreover, in order to increase the approximation accuracy, local models are built by polynomial models instead of just linear models. The identification method is applied to two simulation examples of a discrete-time system and compared with other neural networks-based alternatives to demonstrate the performance and efficiency of the proposed technique.","PeriodicalId":315958,"journal":{"name":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2003.1318080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This work presents a method to determine a local polynomial model from a finite number of measurements of the inputs and outputs for Hammerstein systems which are a zero-memory nonlinearity followed by a linear filter. Self-organizing map (SOM) is utilized to cluster the dynamics in the input-output joint space, where processing-elements (PEs) are extended with local models to enable the original algorithm to learn input-output relationships with reasonable accuracy. Moreover, in order to increase the approximation accuracy, local models are built by polynomial models instead of just linear models. The identification method is applied to two simulation examples of a discrete-time system and compared with other neural networks-based alternatives to demonstrate the performance and efficiency of the proposed technique.
基于自组织映射的局部Hammerstein建模
本文提出了一种从有限数量的Hammerstein系统的输入和输出测量中确定局部多项式模型的方法,该系统是零记忆非线性,然后是线性滤波器。利用自组织映射(SOM)对输入-输出联合空间中的动态进行聚类,其中对加工元素(pe)进行局部模型扩展,使原始算法能够以合理的精度学习输入-输出关系。此外,为了提高逼近精度,局部模型采用多项式模型建立,而不仅仅是线性模型。将该识别方法应用于两个离散时间系统的仿真实例,并与其他基于神经网络的替代方法进行了比较,以证明所提出技术的性能和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信