Adaptive Temporal Segmentation for Action Recognition

Zhiyu Chen, Yangwei Gu, Chunhua Deng, Ziqi Zhu
{"title":"Adaptive Temporal Segmentation for Action Recognition","authors":"Zhiyu Chen, Yangwei Gu, Chunhua Deng, Ziqi Zhu","doi":"10.1109/SPAC49953.2019.237869","DOIUrl":null,"url":null,"abstract":"Learning deep representations have been widely used in action recognition task. However, the features extracted by deep convolutional neural networks (CNNs) have many redundant information. This paper aims to discover the relevance between temporal features extracted by CNNs. Different fromTemporal Segment Networks (TSN) to randomly select video clips. Based on the matrix-based Rényi’s α-entropy, we estimate the mutual information between temporal domain features. Through our experiments, we propose an adaptive temporal segmentation scheme to represent the entire videos. We also combine the features of RGB and optical flow frames extracted by 3D ConvNets to verify the complementary information between them. We show that the proposed approach achieves 94.4 and 72.8 percent accuracy, in the UCF- 101 and HMDB-51 datasets.","PeriodicalId":410003,"journal":{"name":"2019 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAC49953.2019.237869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Learning deep representations have been widely used in action recognition task. However, the features extracted by deep convolutional neural networks (CNNs) have many redundant information. This paper aims to discover the relevance between temporal features extracted by CNNs. Different fromTemporal Segment Networks (TSN) to randomly select video clips. Based on the matrix-based Rényi’s α-entropy, we estimate the mutual information between temporal domain features. Through our experiments, we propose an adaptive temporal segmentation scheme to represent the entire videos. We also combine the features of RGB and optical flow frames extracted by 3D ConvNets to verify the complementary information between them. We show that the proposed approach achieves 94.4 and 72.8 percent accuracy, in the UCF- 101 and HMDB-51 datasets.
动作识别的自适应时间分割
学习深度表征在动作识别任务中得到了广泛的应用。然而,深度卷积神经网络(cnn)提取的特征存在许多冗余信息。本文旨在发现cnn提取的时间特征之间的相关性。不同于时间段网络(TSN)来随机选择视频片段。基于矩阵的r -熵,估计时域特征间的互信息。通过我们的实验,我们提出了一种自适应的时间分割方案来表示整个视频。结合三维卷积神经网络提取的RGB光流帧和光流帧的特征,验证二者之间的互补信息。结果表明,该方法在UCF- 101和HMDB-51数据集中的准确率分别为94.4%和72.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信