{"title":"Pedestrian Tracking by Associating Tracklets using Detection Residuals","authors":"V.K. Singh, Bo Wu, R. Nevatia","doi":"10.1109/WMVC.2008.4544058","DOIUrl":null,"url":null,"abstract":"Due to increased interest in visual surveillance, various multiple object tracking methods have been recently proposed and applied to pedestrian tracking. However in presence of intensive inter-object occlusion and sensor gaps, most of these methods result in tracking failures. We present a two-stage multi-object tracking approach to robustly track pedestrians in such complex scenarios. We first generate high confidence partial track segments (tracklets) using a robust pedestrian detector and then associate the tracklets in a global optimization framework. Unlike the existing two-stage tracking methods, our method uses the unasso- ciated low confidence detections (residuals) between the tracklets, which improves the tracking performance. We evaluate our method on the CAVIAR dataset and show that our method performs better than state-of-the-art methods.","PeriodicalId":150666,"journal":{"name":"2008 IEEE Workshop on Motion and video Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Workshop on Motion and video Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WMVC.2008.4544058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 60
Abstract
Due to increased interest in visual surveillance, various multiple object tracking methods have been recently proposed and applied to pedestrian tracking. However in presence of intensive inter-object occlusion and sensor gaps, most of these methods result in tracking failures. We present a two-stage multi-object tracking approach to robustly track pedestrians in such complex scenarios. We first generate high confidence partial track segments (tracklets) using a robust pedestrian detector and then associate the tracklets in a global optimization framework. Unlike the existing two-stage tracking methods, our method uses the unasso- ciated low confidence detections (residuals) between the tracklets, which improves the tracking performance. We evaluate our method on the CAVIAR dataset and show that our method performs better than state-of-the-art methods.