Invariant measures for Cantor dynamical systems

S. Bezuglyi, O. Karpel
{"title":"Invariant measures for Cantor dynamical\n systems","authors":"S. Bezuglyi, O. Karpel","doi":"10.1090/conm/744/14988","DOIUrl":null,"url":null,"abstract":"This paper is a survey devoted to the study of probability and infinite ergodic invariant measures for aperiodic homeomorphisms of a Cantor set. We focus mostly on the cases when a homeomorphism has either a unique ergodic invariant measure or finitely many such measures (finitely ergodic homeomorphisms). Since every Cantor dynamical system $(X,T)$ can be realized as a Vershik map acting on the path space of a Bratteli diagram, we use combinatorial methods developed in symbolic dynamics and Bratteli diagrams during the last decade to study the simplex of invariant measures.","PeriodicalId":412693,"journal":{"name":"Dynamics: Topology and Numbers","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics: Topology and Numbers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/conm/744/14988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper is a survey devoted to the study of probability and infinite ergodic invariant measures for aperiodic homeomorphisms of a Cantor set. We focus mostly on the cases when a homeomorphism has either a unique ergodic invariant measure or finitely many such measures (finitely ergodic homeomorphisms). Since every Cantor dynamical system $(X,T)$ can be realized as a Vershik map acting on the path space of a Bratteli diagram, we use combinatorial methods developed in symbolic dynamics and Bratteli diagrams during the last decade to study the simplex of invariant measures.
康托动力系统的不变测度
本文研究了康托集非周期同胚的概率和无限遍历不变测度。我们主要关注同胚具有唯一的遍历不变测度或有限多个这样的测度(有限遍历同胚)的情况。由于每个康托动力系统$(X,T)$都可以被实现为作用于Bratteli图的路径空间上的Vershik映射,我们使用近十年来在符号动力学和Bratteli图中发展起来的组合方法来研究不变测度的单纯形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信