{"title":"Effects of Permeability and Wettability on CO2 Dissolution and Convection at Realistic Saline Reservoir Conditions: A Visualization Study","authors":"W. Amarasinghe, I. Fjelde, J. Rydland, Ying Guo","doi":"10.2118/195469-MS","DOIUrl":null,"url":null,"abstract":"\n When CO2 is injected to aquifers, CO2 will be dissolved into the water phase and react with rock minerals. The CO2 dissolution into the water phase initiated by the diffusion, will increase the density of the water- phase and thereby accelerate convective flow of CO2. The objective of the presented work was to study the effects of permeability and wettability of porous media by visual investigation of mixing of supercritical CO2 (sCO2) with water by convectional flow at realistic reservoir conditions (pressure and temperature). This required construction of a high-pressure transparent 2D-cell that allows visualization of CO2 transport, and development of experimental procedures.\n To develop the high-pressure Hele-Shaw 2D-cell, stress/strain calculations and simulations were carried out to select the best building materials for realistic working pressure and temperature and required dimensions to study convection. Porous media was prepared by glass beads of different sizes giving different permeability and wettability. The experiments were carried out at 100 bars and 50 °C using deionized water solution with Bromothymol blue (BTB) as pH indicator.\n In the constructed Hele-Shaw 2D-cell, the cell volume was formed by two glass plates separated by an adjustable spacer. The cell thickness was 5.0 mm in the present study. The high-pressure 2D-cell has made it possible to investigate CO2-dissolution and mixing with water at pressures and temperatures realistic for CO2-storage reservoirs.\n CO2 mixing and finger development in the water phase without the presence of porous media, was an instantaneous process. The rate for CO2 dissolution and mixing with water was found to increase with increasing permeability for water-wet porous media. The CO2 dissolution pattern was found to depend on the permeability. Fingering of CO2 rich high-density water was observed with the high permeable porous media. Piston-like displacement was observed in lower permeable porous media. No significant effect of wettability was observed in the high-pressure 2D cell experiments. After experiments, it was confirmed that the wettability of the oil-wet particles was changed during the CO2 dissolution experiments.","PeriodicalId":103248,"journal":{"name":"Day 4 Thu, June 06, 2019","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 4 Thu, June 06, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/195469-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
When CO2 is injected to aquifers, CO2 will be dissolved into the water phase and react with rock minerals. The CO2 dissolution into the water phase initiated by the diffusion, will increase the density of the water- phase and thereby accelerate convective flow of CO2. The objective of the presented work was to study the effects of permeability and wettability of porous media by visual investigation of mixing of supercritical CO2 (sCO2) with water by convectional flow at realistic reservoir conditions (pressure and temperature). This required construction of a high-pressure transparent 2D-cell that allows visualization of CO2 transport, and development of experimental procedures.
To develop the high-pressure Hele-Shaw 2D-cell, stress/strain calculations and simulations were carried out to select the best building materials for realistic working pressure and temperature and required dimensions to study convection. Porous media was prepared by glass beads of different sizes giving different permeability and wettability. The experiments were carried out at 100 bars and 50 °C using deionized water solution with Bromothymol blue (BTB) as pH indicator.
In the constructed Hele-Shaw 2D-cell, the cell volume was formed by two glass plates separated by an adjustable spacer. The cell thickness was 5.0 mm in the present study. The high-pressure 2D-cell has made it possible to investigate CO2-dissolution and mixing with water at pressures and temperatures realistic for CO2-storage reservoirs.
CO2 mixing and finger development in the water phase without the presence of porous media, was an instantaneous process. The rate for CO2 dissolution and mixing with water was found to increase with increasing permeability for water-wet porous media. The CO2 dissolution pattern was found to depend on the permeability. Fingering of CO2 rich high-density water was observed with the high permeable porous media. Piston-like displacement was observed in lower permeable porous media. No significant effect of wettability was observed in the high-pressure 2D cell experiments. After experiments, it was confirmed that the wettability of the oil-wet particles was changed during the CO2 dissolution experiments.