Abdullah Fahim, P. Samarasinghe, T. Abhayapala, Hanchi Chen
{"title":"A Planar Microphone Array for Spatial Coherence-Based Source Separation","authors":"Abdullah Fahim, P. Samarasinghe, T. Abhayapala, Hanchi Chen","doi":"10.1109/MMSP.2018.8547121","DOIUrl":null,"url":null,"abstract":"We proposed a spatial coherence-based PSD estimation and source separation technique in [1] using a 32-channel spherical microphone array. While the proposed spherical microphone-based method exhibited a satisfactory performance in separating multiple sound sources in a reverberant environment, the use of a large number of microphones remains an issue for some practical considerations. In this paper, we investigate an alternative array structure to achieve spatial coherence-based source separation using a planar microphone array. This method is particularly useful in separating a limited number of sound sources in a mixed acoustic scene. The simplified array structure we used here can easily be integrated with many commercial acoustical instruments such as smart home devices to achieve better speech enhancements.","PeriodicalId":137522,"journal":{"name":"2018 IEEE 20th International Workshop on Multimedia Signal Processing (MMSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 20th International Workshop on Multimedia Signal Processing (MMSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2018.8547121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We proposed a spatial coherence-based PSD estimation and source separation technique in [1] using a 32-channel spherical microphone array. While the proposed spherical microphone-based method exhibited a satisfactory performance in separating multiple sound sources in a reverberant environment, the use of a large number of microphones remains an issue for some practical considerations. In this paper, we investigate an alternative array structure to achieve spatial coherence-based source separation using a planar microphone array. This method is particularly useful in separating a limited number of sound sources in a mixed acoustic scene. The simplified array structure we used here can easily be integrated with many commercial acoustical instruments such as smart home devices to achieve better speech enhancements.