{"title":"Keeping Data Private while Computing in the Cloud","authors":"Yuriy Brun, N. Medvidović","doi":"10.1109/CLOUD.2012.126","DOIUrl":null,"url":null,"abstract":"The cloud offers unprecedented access to computation. However, ensuring the privacy of that computation remains a significant challenge. In this paper, we address the problem of distributing computation onto the cloud in a way that preserves the privacy of the computation's data even from the cloud nodes themselves. The approach, called sTile, separates the computation into small subcomputations and distributes them in a way that makes it prohibitively hard to reconstruct the data. We evaluate sTile theoretically and empirically: First, we formally prove that sTile systems preserve privacy. Second, we deploy a prototype implementation on three different networks, including the globally-distributed PlanetLab testbed, to show that sTile is robust to network delay and efficient enough to significantly outperform existing privacy-preserving approaches.","PeriodicalId":214084,"journal":{"name":"2012 IEEE Fifth International Conference on Cloud Computing","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Fifth International Conference on Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLOUD.2012.126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26
Abstract
The cloud offers unprecedented access to computation. However, ensuring the privacy of that computation remains a significant challenge. In this paper, we address the problem of distributing computation onto the cloud in a way that preserves the privacy of the computation's data even from the cloud nodes themselves. The approach, called sTile, separates the computation into small subcomputations and distributes them in a way that makes it prohibitively hard to reconstruct the data. We evaluate sTile theoretically and empirically: First, we formally prove that sTile systems preserve privacy. Second, we deploy a prototype implementation on three different networks, including the globally-distributed PlanetLab testbed, to show that sTile is robust to network delay and efficient enough to significantly outperform existing privacy-preserving approaches.