NBF: An FCA-Based Algorithm to Identify Negative Correlation Biclusters of DNA Microarray Data

Amina Houari, Wassim Ayadi, S. Yahia
{"title":"NBF: An FCA-Based Algorithm to Identify Negative Correlation Biclusters of DNA Microarray Data","authors":"Amina Houari, Wassim Ayadi, S. Yahia","doi":"10.1109/AINA.2018.00146","DOIUrl":null,"url":null,"abstract":"Biclustering is a popular technique to study gene expression data, especially to identify functionally related groups of genes under subsets of conditions. Nevertheless, most of the existing biclustering algorithms only focus on the positive correlations of genes. However, recent research shows that groups of biologically significant genes may exhibit negative correlations. Thus, we need a novel way to efficiently unveil such a type of correlations. We introduce, in this paper, a new algorithm, called the Negative Bicluster Finder (NBF). The sighting features of the NBF stands in its ability to discover the biclusters of negative correlations using the theoretical results provided by the Formal Concept Analysis. Exhaust experiments are carried out on three real-life datasets to assess the performance of the NBF. Our results prove the NBF's ability to statistically and biologically identify significant biclusters.","PeriodicalId":239730,"journal":{"name":"2018 IEEE 32nd International Conference on Advanced Information Networking and Applications (AINA)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 32nd International Conference on Advanced Information Networking and Applications (AINA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AINA.2018.00146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Biclustering is a popular technique to study gene expression data, especially to identify functionally related groups of genes under subsets of conditions. Nevertheless, most of the existing biclustering algorithms only focus on the positive correlations of genes. However, recent research shows that groups of biologically significant genes may exhibit negative correlations. Thus, we need a novel way to efficiently unveil such a type of correlations. We introduce, in this paper, a new algorithm, called the Negative Bicluster Finder (NBF). The sighting features of the NBF stands in its ability to discover the biclusters of negative correlations using the theoretical results provided by the Formal Concept Analysis. Exhaust experiments are carried out on three real-life datasets to assess the performance of the NBF. Our results prove the NBF's ability to statistically and biologically identify significant biclusters.
一种基于fca的DNA微阵列数据负相关双聚类识别算法
双聚类是研究基因表达数据的一种流行技术,特别是在亚群条件下识别功能相关的基因群。然而,大多数现有的双聚类算法只关注基因的正相关。然而,最近的研究表明,生物学上重要的基因群可能表现出负相关。因此,我们需要一种新的方法来有效地揭示这种类型的相关性。本文介绍了一种新的算法,称为负双聚类查找器(NBF)。NBF的观察特征在于它能够利用形式概念分析提供的理论结果发现负相关的双聚类。在三个实际数据集上进行了排气实验,以评估NBF的性能。我们的结果证明了NBF在统计学和生物学上识别显著双聚类的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信