The Measurement of Capital: Retrieving Initial Values from Panel Data

Xi Chen, T. Plotnikova
{"title":"The Measurement of Capital: Retrieving Initial Values from Panel Data","authors":"Xi Chen, T. Plotnikova","doi":"10.1111/roiw.12300","DOIUrl":null,"url":null,"abstract":"A common problem with micro‐level analysis is that capital stock data is missing. Typically, a feasible measure of capital is calculated by accumulating investment flows from an initial value of the capital stock. As the time dimension of most disaggregated data is rather short, the choice of this initial value can have significant effects on the resulting capital estimates. Most empirical studies impute the initial value using a single arbitrary proxy. In this paper, we propose a panel data framework that assigns weighting coefficients to multiple proxy variables. We conduct a series of Monte Carlo experiments to test the performance of the proposed method and apply the method to a U.S. manufacturing dataset. The results suggest that our method improves the approximation of the capital stock and thus in turn reduces the bias in the production function estimation.","PeriodicalId":125977,"journal":{"name":"ERN: Other Macroeconomics: Employment","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Other Macroeconomics: Employment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/roiw.12300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A common problem with micro‐level analysis is that capital stock data is missing. Typically, a feasible measure of capital is calculated by accumulating investment flows from an initial value of the capital stock. As the time dimension of most disaggregated data is rather short, the choice of this initial value can have significant effects on the resulting capital estimates. Most empirical studies impute the initial value using a single arbitrary proxy. In this paper, we propose a panel data framework that assigns weighting coefficients to multiple proxy variables. We conduct a series of Monte Carlo experiments to test the performance of the proposed method and apply the method to a U.S. manufacturing dataset. The results suggest that our method improves the approximation of the capital stock and thus in turn reduces the bias in the production function estimation.
资本的度量:从面板数据中检索初始值
微观层面分析的一个常见问题是缺少资本存量数据。通常,一个可行的资本度量是通过从资本存量的初始值累积投资流量来计算的。由于大多数分解数据的时间维度相当短,因此该初始值的选择可能对最终的资本估计产生重大影响。大多数实证研究使用单个任意代理来推算初始值。在本文中,我们提出了一个面板数据框架,为多个代理变量分配权重系数。我们进行了一系列蒙特卡罗实验来测试所提出方法的性能,并将该方法应用于美国制造业数据集。结果表明,我们的方法改善了资本存量的近似值,从而减少了生产函数估计中的偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信